

# HARDWARE MANUAL

Expert Key – Installation and start-up



Delphin Technology AG Lustheide 81 51427 Bergisch Gladbach Germany 
 Phone
 +49 2204 97685-0

 Telefax
 +49 2204 97685-85

 Email
 info@delphin.de

 Internet
 www.delphin.com







# **Table of contents**

|   | Expert Key         | 1                              |
|---|--------------------|--------------------------------|
| 1 | Device versions    |                                |
| 2 | First steps        |                                |
|   | Svstem requirer    | nents                          |
|   | Software installa  | tion                           |
|   | Power supply / S   | Switching device on            |
|   | Connecting         |                                |
| 3 | Expert Key L - Des | cription                       |
|   | Displays / LEDs    |                                |
|   | Connections        |                                |
|   | Connection         | nformation                     |
|   | Connecting         | sensors                        |
|   | Connecting         | actuators                      |
|   | Grounding          |                                |
|   | Galvanic isolatio  | n 29                           |
| 4 | Expert Kev C - Des | cription                       |
|   | Displays / LEDs    | 31                             |
|   | Connections        |                                |
|   | Connection         | nformation                     |
|   | Connecting         | sensors / actuators            |
|   | Grounding          |                                |
|   | Galvanic isolatio  | n 39                           |
| 5 | Function and Opera | tion                           |
| - | Dialogue option    | / General                      |
|   | Device             | 46                             |
|   | Analog input       |                                |
|   | Dialogue opt       | ion / Voltage sensor type      |
|   | Dialogue opt       | ion / Current sensor type      |
|   | Dialogue opt       | ion / Thermocouple sensor type |
|   | Dialogue opt       | ion / RTD sensor type          |
|   | Sample rate        | s and measurement accuracy 58  |
|   | Digital input with | counter function               |
|   | Dialogue opt       | ion / Level detector 60        |
|   | Dialogue opt       | ion / Counter 61               |
|   | Dialogue opt       | ion / Frequency measurement 63 |
|   | Digital input      |                                |
|   | Analog output      |                                |
|   | Dialogue opt       | ion 67                         |
|   | Digital output     |                                |
|   | Dialogue opt       | ion70                          |





|   | Digital output with PWM function     | 72 |
|---|--------------------------------------|----|
|   | Dialogue option                      | 74 |
|   | Device settings save and load        | 76 |
|   | Configuration reset                  | 78 |
|   | Device information                   | 79 |
|   | Device firmware                      | 80 |
| 6 | Device synchronization               | 81 |
| 7 | Technical specifications             | 84 |
|   | Analog inputs                        | 85 |
|   | Digital inputs with counter function | 89 |
|   | Digital inputs                       | 91 |
|   | Analog outputs                       | 92 |
|   | Digital outputs                      | 93 |
|   | Digital outputs with PWM function    | 94 |
|   | Synchronization                      | 95 |
|   | Device specification                 | 96 |
|   |                                      |    |





Expert Key is Delphin's new product series for PC-supported measurement technology and test stand automation.

The entire functioning of an Expert device is incorporated onto a single circuit board, giving it an extremely compact format. Expert Key devices are equipped with both USB and network interfaces that can be used as required.

The fold-down **Expert Key L** model with plug-in screw terminals is for laboratory and experiment use. The **Expert Key C** model, with a robust metal housing, is intended for cabinet mounting. The **Expert Key M\*** model, a measurement case, is equipped with flexible connection options.



The devices are supplied with ProfiSignal Go software for the quick-start of measurement and automation procedures. Functions range form data storage, both in record and continuous database format, right through to online and offline analyses and monitoring in trends. There are also functions for monitoring, alarm-management and data-export.

\* Not illustrated



# **1** Device versions

# Device versions input / output channels

| Expert Key L                               | Expert Key 100L | Expert Key 200L |
|--------------------------------------------|-----------------|-----------------|
| Expert Key C                               | Expert Key 100C | Expert Key 200C |
| Analog inputs                              |                 |                 |
| Number                                     | 14              | 28              |
| Power supply for RTD / Number              | Yes / 4         | Yes / 8         |
| Temperature Reference Junction /<br>Number | Yes / 1         | Yes / 2         |
| Analog outputs                             |                 |                 |
| Number                                     | 2               | 2               |
| Digital inputs                             |                 | 1               |
| Number                                     | 12 to 8         | 1               |
| with counter function                      | 2               | 1               |
| Digital outputs                            | 1               | 1               |
| Number                                     | 4 to 8          | 1               |
| with PWM function                          | 4               | 1               |



# 2 First steps

The *First steps* section contains information on standard delivery, safety information and system requirements.

The following pages provide further information on device functions and their operation.

# **Standard delivery**

Please check that the delivery is complete:

- Device in tabletop housing with wall bracket, or device in metal housing
- Power supply connector with 3-pole screw connector (for tabletop housing only)
- USB cable (for PC connection)
- CD containing ProfiSignal Go software and all manuals in electronic format
- Introductory manual (hard copy)
- Thermocouple
- Screwdriver
- Two screws
- 5 x 50 W shunt resistors

## Safety Advice

The device's connections (also internal) are operated at a voltage of <=50  $V_{\text{DC}}$ . This voltage is categorized as safe for human handling.

Only the external power supply has a  $230V_{AC}$  or  $110V_{AC}$  connection. Use only the delivered power supply connector with protective insulation.

The protective insulation is labelled as  $\square$ 





# 2.1 System requirements

The following hardware requirements are the minimum requirements to ensure problem-free operation of the **Delphin** products.

#### • Operating System

Microsoft Windows XP 32-bit, Windows Vista and Windows 7 in the 32-bit- or 64-bit versions,

either the English or German versions.

- Main memory At least 1024 MB\* Recommended: 2 ... 3 GB for 32-bit systems, 4 ... 8 GB for 64-bit-systems
- Monitor At least 1024 x 768 pixel, 96 dpi resolution

#### • CPU

A PC with at least 1.6-GHz\* Recommended: Systems with dual or 4-core processors from 2.5 GHz or greater

#### Hard disk

for ProfiSignal-Go at least 70 MB of free hard disk space for ProfiSignal-Viewer at least 70 MB of free hard disk space for ProfiSignal-Klicks at least 500 MB of free hard disk space for other ProfiSignal-- versions at least 200 MB of free hard disk space





## 2.2 Software installation

Install the CD **ProfiSignal Go**. Please ensure that the DataService Configurator is installed as a *Program* (and not as a *Service*).

Following installation from the CD of the program ProfiSignal Go the following icons will be displayed:



The **DataService Configurator** is a device driver and tool for configuring the Expert device (settings for sensor / actuator connections).

The **ProfiSignal** program provides evaluation and visualisation functions for measurement data.

#### **USB** connection

To connect the **Expert Key** via the USB, the USB driver needs to be installed via Setup. Select Setup *USB driver for Expert devices*. Connect the **Expert Key** device only after USB driver installation has been performed at a PC.







# 2.3 **Power supply / Switching device on**

The device operates with an external power supply in the 9...24  $V_{\text{DC}}$  range. Power input is 6 W maximum.

#### Expert Key L:

Use the power supply connector to connect the device to the mains power supply.

#### Expert Key C:

Connect an external power supply to the device.

The device is now on. The blue *Power* LED lights.

After a few seconds the blue *Run* LED also lights. Pulsation of one second the LED indicates that the device is operating normally.



# 2.4 Connecting

## **Cable connections to PC**

Connecting device to PC.

Use either the supplied USB cable or network cable.

## Create data link to device

Use the DataService Configurator program to create a data link to the device. Select *Connections*.







## 1. USB connection



Ensure that the USB driver is installed before connecting device for the first time with a USB cable. The USB driver is installed during installation from the ProfiSignal CD (= V3.0).

Connect the device to the PC using the USB cable.

Data connection now takes place automatically.

A successful USB connection will then appear as follows:

| Connections Channels Database Alerting | Scheduler User manageme | ent     |        |             |               |
|----------------------------------------|-------------------------|---------|--------|-------------|---------------|
| Name                                   | ∀ Host/IP               | Connect | State  | Drivertype  | Version       |
| 🕞 📲 DataService ID 1760                | PC97                    | Yes     | Online | DataService | DataService V |
| Expert Key 100L                        |                         | Yes     | Online | Expert Key  | 1.02.60.00    |
| Configuration Events                   |                         |         | -î     |             | — <b>Ť</b>    |





## 2. LAN connection

The device is supplied ex-works with the fixed IP address of 192.168.251.252. The service is also DHCP activated.



Select the Connections tab in the DataService Configurator ▶ Context menu ▶ Add

driver (connection)

| Connections Channels Database Aler | ting Scheduler User managem | ent                                                                                              |                                                                        |            |             |
|------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|-------------|
| ame                                | ∀ Host/IP                   | Connect                                                                                          | State                                                                  | Drivertype | Version     |
| Add c                              | Iriver (connection)         | TopMessag<br>ProfiMessa<br>Expert Key I<br>Software ch<br>OPC Client<br>DataService<br>More conn | e device<br>ge device<br>device (LAN)<br>nannels<br>: Client<br>ection |            | Databetynce |

An available valid IP address is now assigned to the device by the (customer's) DHCP-server.





Select the device from Found devices

| General Found   | devices      |                 |
|-----------------|--------------|-----------------|
| 192.168.251.252 | 2            | Expert Key 100L |
| 192.168.251.252 | 2            | Expert Key 100  |
|                 |              |                 |
|                 |              |                 |
|                 |              |                 |
| W 70 V 48 V     | - 11 MC 7614 |                 |

The IP address can be input manually.

|                 | vices |              |  |
|-----------------|-------|--------------|--|
| Interface       |       |              |  |
| O USB () T      | CP/IP |              |  |
| <u>H</u> ost    |       | <u>P</u> ort |  |
| 192.168.251.252 |       | 1034         |  |
| Connect         |       |              |  |
| 🔘 Manually      | 🖱 Au  | tomatically  |  |
| Always          |       |              |  |





A successful LAN connection will then appear as follows:

| Name                      | ∀ Host/IP       | Connect | State      | Drivertype  | Version       |  |
|---------------------------|-----------------|---------|------------|-------------|---------------|--|
| 🖃 – 🛐 DataService ID 1760 | PC97            | Yes     | Online     | DataService | DataService V |  |
| Expert Key 100L           | 192.168.251.252 | Yes     | Online     | Expert Key  | 1.02.60.00    |  |
|                           |                 |         | _ <b>_</b> |             | <b>T</b>      |  |



# **3 Expert Key L - Description**

# Opening



#### Power supply connection

The device operates with an external power supply with a range of  $9...24 V_{DC}$ .

Maximum input is 6 W.



Use only with the supplied power supply connector.

The connector is suitable for mains supplies of either 230V/50Hz or 110V/60Hz. This range covers the European region. Versions are also available for regions with different connecting plugs.



# 3.1 **Displays / LEDs**

At the front:



#### **Blue LED: Power**

Permanently *on* during normal operation. Indicates that the power supply (via external supply) is on.

#### Blue LED: Run

*On* in normal operation and pulsates at a rate of 1 s. Indicates that the processor is operating normally.

#### **Special situations:**

The LED flashes at ca. 5 Hz during a firmware download / update.

#### **Red LED: Error**

Is off during normal operation.

A short flash indicates a tolerable error has occurred.

The LED lights permanently when a serious error has occurred.



# 3.2 Connections







#### When the lid is opened, the following screw terminals are then accessible:





#### 3.2.1 Connection information

## **Connection diagram Expert Key 100L**





# **Connection diagram Expert Key 200L**







#### 3.2.2 Connecting sensors

This section uses examples to give advice on connections.

# 1. Analog input sensor / voltage

Sensors with voltage signals can be connected directly.



**Info:** The largest measurement range is ± 10V. The smallest measuring range is ± 100mV.





# 2. Analog input sensor / current, 20mA

For sensors with current signals, a load resistor is intended for the input terminals. The appropriate resistors can be supplied as accessories.





#### Info:

Load resistance must be in the range  $10\Omega$  to  $500\Omega.$ 





## 3. Analog input sensor / temperature, thermocouple

Thermocouple-temperature sensors can be connected directly. Any normal type of thermocouple can be used.





#### Info:

The required reference junction is integrated in the device. Refer to TRJ measuring point.





## 4. Analog input sensor / temperature, RTD

 $\ensuremath{\mathsf{4}}\xspace$  wire type RTD temperature sensors are recommended for connection.

The device offers several sources for constant current.





When connecting a series of sensors, there may be more sensors than available constant current sources. Source IREF1 is then assigned to the analog inputs AIN1, AIN5, AIN9, AIN13 and source IREF2 to the analog inputs AIN2, AIN6, AIN10, AIN14, etc.



**Expert Key** 





## 5. Digital input sensor

Specific digital inputs are intended for level detection, others for extra frequency measuring and counting.

#### a) Level detection





The input signal should be a right-angle signal. The input signal must have an High-level in the 5...50V range. Maximum frequency is 10 kHz.





#### b) Frequency measuring / counting









#### 3.2.3 Connecting actuators

This section uses examples to provide information on connections.

# 1. Analog output actuator

As an output signal, either a voltage signal (0...10V or  $\pm$  10V) or a current signal (0...20mA, 4...20mA or  $\pm$  20mA) can be used.





# 2. Digital output actuator, resistive (ohmic) load

The digital output requires an external feed in the  $5\ldots 50V_{\rm DC}$  range.

The device contains an electronic switch (FET). There is a defined current flow direction from terminal "++" to terminal "+".

#### a. 2-wire connection

#### b. 3-wire connection









# 3. Digital output actuator, inductive load

The digital output requires an external feed in the  $5...50V_{DC}$  range.

The device contains an electronic switch (FET). There is a defined current flow direction from terminal "++" to terminal "+".

#### a. 2-wire connection





#### Info:

An integrated inverse diode, external to the actuator (e.g. relay), is intended here.

The output is controlled using an interconnected PC.





## b. 3-wire connection





#### Info:

An integrated inverse diode is used here (not shown in illustration). A 3-wire connection is now also required. The output is controlled using an interconnected PC.





# 3.3 Grounding

The device is equipped with an earth connection, labelled as **PE**, and has contact to the aluminium cover plate and the USB-/LAN-metal coverings. This connector has no direct link to the OV DC of the voltage supply.



The supplied power supply connector has protective insulation and therefore no earthing.

It is recommended to attach an earth connection (2.5  $\rm mm^2)$  at the PE terminal in order to,

- avoid potential differences occurring between the device and earthed sensors / actuators
- to create a shield connection when required for shielded sensor cables
- to improve EMC properties
- to discharge static electrical discharges (generated externally).



# 3.4 Galvanic isolation

The groups

- analog inputs (with constant current)
- analog outputs
- digital inputs
- digital outputs

are galvanically isolated from each other, the rest of the system and from the PC.

More can be found in the next section.





# 4 Expert Key C - Description

Description



#### Power supply connector

The device operates with an external power supply with a range of  $9...24 V_{DC}$ .

Maximum input is 6 W.

When a power supply connector is delivered with the device it should be used whenever possible.



# 4.1 **Displays / LEDs**

| Power          |  |
|----------------|--|
| Run            |  |
| Reset<br>Error |  |

#### **Blue LED: Power**

Permanently *on* during normal operation. Indicates that the powers supply (via external supply) is on.

#### Blue LED: Run

*On* in normal operation and gently pulsates at a rate of 1 s. Indicates that the processor is operating normally.

#### **Special situations:**

The LED flashes at ca. 5 Hz during a firmware download / update.

#### **Red LED: Error**

Is off during normal operation.

A short flash indicates a tolerable error has occurred.

The LED lights permanently when a serious error has occurred.



# 4.2 Connections

## **Front connections**






### Lower connections







## **Upper connections**





### 4.2.1 Connection information

### **Connection diagram Expert Key 100C**







## **Connection diagram Expert Key 200C**







### 4.2.2 Connecting sensors / actuators

Connection information using examples is identical to the examples using Expert Key L.

Please refer to Connecting sensors and Connecting actuators.





### 4.3 Grounding

The device is equipped with a dedicated earth connection in the form of a threaded pin on the lower mounting tab. An earth connection (=2.5 mm<sup>2</sup>) is intended here to establish protective earthing.



The device also has an earthing connection labelled PE. This is connected to the metal housing and the metal coverings on the USB-/LAN connections. This connector has no direct link to the OV DC of the voltage supply.

Both types of earthing connections are intended to

- avoid potential differences occurring between the device and earthed sensors / actuators.
- create a shield connection when required for shielded sensor cables.
- improve EMC properties.
- discharge static electrical discharges (generated externally).



## 4.4 Galvanic isolation

The groups

- analog inputs (with constant current)
- analog outputs
- digital inputs
- digital outputs

are galvanically isolated from each other, the rest of the system and from the PC.

More can be found in the next section.



## 5 Function and Operation

### **Operating**, general

Configuration of all connections and sensors takes place via the program *DataService Configurator*.

Select the tab 🕨 Channels

| Connec <u>t</u> ions | <u>C</u> hannels | Database | Alerting | Scheduler | Üser manageme | ent |
|----------------------|------------------|----------|----------|-----------|---------------|-----|
| Channel              |                  |          | ۵        | Value     | Channelnu     | 1[  |
| 🕞 🔵 Ex               | pert Key 100     | ìL.      |          | 1         | 14.<br>(1)    | 1   |
| ÷                    | ⊢ AIN 1          |          |          | -3,591    | N 1           | 1   |
| -÷                   | ⊢ AIN 2          |          |          | -22,16 m  | V 2           | 1   |
| ÷                    | ⊢ AIN 3          |          |          | -15,15 m  | V 3           |     |
| -À                   | – AIN 4          |          |          | -26,47 m  | √ 4           | Ir  |





## View of all channels

| Expert Key 100L   |            | Expert Key 200L |             |
|-------------------|------------|-----------------|-------------|
| AIN 1             | 4976,70 mV | AIN 1           | -4969,37 mV |
| AIN 2             | -33,19 mV  | AIN 2           | 14,04 mV    |
| AIN 3             | 21,81 °C   | AIN 3           | 30,89 °C    |
| AIN 4             | 28,42 °C   | AIN 4           | 29,47 °C    |
|                   |            |                 | 2           |
|                   | (a)        |                 | 12          |
|                   | ्त         | 🖈 AIN 7         | 14          |
| AIN 8             |            |                 |             |
| - U TRJ           | 25,7 °C    | - G TBJ 1       | 31,7 °C     |
| AIN 9             | (e)<br>(e) | AIN 9           | 12          |
|                   | া          | 🖈 AIN 10        | 18          |
| AIN 11            |            | 🖈 AIN 11        |             |
|                   | 1.00       | 🏠 AIN 12        |             |
| AIN 13            | (A)        | 🏠 AIN 13        | 12          |
|                   | ंग.        | AIN 14          | 18          |
| AOUT 1            |            | AOUT 1          |             |
| <b>: 4</b> AOUT 2 |            | ADUT 2          |             |
| 😑 🏰 DIN 1         | Aus        | AIN 15          | 31,52 °C    |
|                   | 2633,00    | AIN 16          | 14          |
| 🔤 🔤 📶 🔤 🔤         | 24,9990 Hz | 🖈 AIN 17        |             |
| 🕀 🕂 DIN 2         |            | 🎝 AIN 18        |             |
| DIN 3             | 1          | 🎝 AIN 19        | 12          |
|                   | 1          | 🖈 AIN 20        | 10          |
| DIN 5             |            | 🖈 AIN 21        |             |
|                   |            | 🎝 AIN 22        |             |
| DIN 7             | 1          | - 🕒 TRJ 2       | 30,0 °C     |
|                   | 1          | 🎝 AIN 23        | 14          |
| DIN 9 / DOUT 8    |            | 🖈 AIN 24        |             |
|                   |            | 🖈 AIN 25        |             |
| DIN 11 / DOUT 6   | 1          | 🖈 AIN 26        | 12          |
|                   | 1          | #> AIN 27       | 10          |
| DOUT 4            | <u></u>    |                 |             |
| DOUT 3            |            | DOUT 1          |             |
| DOUT 2            | ().<br>(). | 🗄 🛨 DIN 1       | Ein         |
| DOUT 1            | 1.07       | 123 COUNT 1     | 166         |





## 5.1 **Dialogue option / General**

The operating elements are the same for all dialogues and are described here using *Analog Input* as an example.

Select the tab 🕨 Main settings

| Active               |                |             |                |         |             |                                    |             |
|----------------------|----------------|-------------|----------------|---------|-------------|------------------------------------|-------------|
| hannel <u>n</u> ame  | Force          |             |                |         |             |                                    |             |
| Injt                 | N              |             |                |         |             |                                    |             |
| ) <u>e</u> scription |                |             |                |         |             |                                    |             |
| Main settings        | Advanced set   | tings Senso | rcompensation  |         |             |                                    |             |
|                      | Sensor type    | Voltage     |                | •       |             | AIN 1                              |             |
|                      | Subtype        | bipolar     |                | •       |             |                                    | ٦           |
| Meas                 | urement range  | +/          | -2000 🔻 m      | V       |             | <u>┨╪</u> <u>┣</u> ᡱ_┣╲            |             |
|                      | Shunt resistor |             | *]0            | hm      | /m<br>Sens  | v _ t <sup>2</sup> -∕<br>or Device | max. ± 10 ∨ |
|                      |                |             |                |         |             | Connection diagram                 |             |
| Conversion           |                | Input       |                |         | Output      |                                    |             |
|                      | Min.           | 0           | mV             | Min.    | 0           | N                                  |             |
|                      | Max.           | 1000        | mV             | Max.    | 50          | N                                  |             |
|                      |                |             | ] ı            | Ha Tota | l comple ra | ste 140 Hz                         |             |
|                      | Sample rate    | -1(         |                | 12 1000 | r sampio re | 140112                             |             |
|                      | Sample rate    | 1           | <b>0 •</b> ] 1 |         |             |                                    |             |
|                      | Sample rate    |             | <u>v •</u> ] r |         |             |                                    |             |
|                      | Sample rate    | 1           | <u>, ,</u> ,,  |         |             |                                    |             |





#### Operating elements from the upper dialogue area:

Active

Activates this channel. Transmission of measurement data from the device is now possible.

Channel<u>n</u>ame Force

Enter a name here for the measuring point, e.g. Power1.

Unit

Enter the physical unit for this measuring point, e.g. N.

Description

Enter a description (or commentary) of the measuring point, e.g. Pump 3.

#### Operating elements from the lower dialogue area:



N

Switches between previous / next channels, determined by channel number, and displays the relevant dialogue.



Accepts all the new settings and transmits these to the device. Closes the dialogue.



Ends the procedure. Closes the dialogue.



Runs *Help* i.e opens the electronic manual.





| Default value  |           |              |                                    |  |
|----------------|-----------|--------------|------------------------------------|--|
|                | 25        | N            | E Force default value (simulation) |  |
| Data reduction | Tolerance |              |                                    |  |
|                | 0,5       | N            | •                                  |  |
| Formatting     |           |              |                                    |  |
|                | 2 🔻       | Fractional o | digits                             |  |

#### Elements from the Advanced settings tab:

| Default value |    |   |                                    |  |
|---------------|----|---|------------------------------------|--|
|               | 25 | N | 🥅 Force default value (simulation) |  |
| fr.           |    |   |                                    |  |

#### For inputs:

In the event of an input failure, the default value (instead of the measured value) is transmitted from the device to the PC.

#### For outputs:

In the event of an output failure, the default value (instead of the measured value) is transmitted from the device to the PC.

| <u>T</u> olerance |     |  |
|-------------------|-----|--|
| 0,5               | N 🚽 |  |

For PC-based data recording, this element is used for setting tolerance levels for recording. In the example shown, a new measurement value is recorded only when there is a change of more than 0.5 N over the previously recorded value.

| Formatting |     |                   |  |
|------------|-----|-------------------|--|
|            | 2 🔻 | Fractional digits |  |
|            |     |                   |  |

For setting the required accuracy for the measurement or output value.





Select the tab 🕨 Sensor compensation

| an seun                              | Is Advanced settings                                         | Sensorcompensation          |        |
|--------------------------------------|--------------------------------------------------------------|-----------------------------|--------|
| 🗸 Active                             |                                                              |                             |        |
| Mode                                 |                                                              |                             |        |
|                                      | 2007/2 DO 113/00 010 020                                     |                             |        |
| Offset ar                            | d Gradient (2 calibrationp                                   | points) 🔹                   |        |
| Offset ar<br>Calibratio              | id Gradient (2 calibrationp<br>n points<br>Correct value (N) | ) Measured value (N)        | Import |
| Offset ar<br>Calibratio<br><b>1.</b> | n points Correct value (N) 0                                 | ) Measured value (N)<br>2,3 |        |

#### Elements from the Sensor compensation tab:

🗸 Active

Activates sensor compensation, i.e. manual adjustment.

\*

Mode

Offset and Gradient (2 calibrationpoints)

Select whether there are 1,2 or 3 calibration points.

| Calibration points |                   |                    |  |  |  |
|--------------------|-------------------|--------------------|--|--|--|
|                    | Correct value (N) | Measured value (N) |  |  |  |
| 1.                 | 0                 | 2,3                |  |  |  |
| 2.                 | 100               | 103,4              |  |  |  |

Enter the calibration point (with *Correct value* and *Measured value*. The example shown concerns temperature measurement with calibration at 0°C and 100°C.



## 5.2 Device

## Properties

Select **Properties** from the device's *context menu*.

| Connections | Channels           | <u>D</u> atabase | Alerting                  | Scheduler    | 1   |
|-------------|--------------------|------------------|---------------------------|--------------|-----|
| Channel     |                    |                  |                           | 🛆 Va         | lue |
|             | pert Key 10        | 01-400400        | NET HOL                   |              |     |
|             | Pointer            | Proper           | ties                      |              |     |
| Ŧ           | $\succ$ AIN 1      | Show             | device info               | ormations    |     |
|             | ≻ AIN 2<br>≻ AIN 3 | Save o           | levice sett<br>evice sett | ings<br>ings | -   |

This opens the following window.

| Channel set          | tings 'Expert Ko  | ey 100L' (Expert Key 100L @ Expert Key 1 |
|----------------------|-------------------|------------------------------------------|
| Active               |                   |                                          |
| Channel <u>n</u> ame | Expert Key 100L   |                                          |
|                      |                   |                                          |
|                      | -                 |                                          |
| D <u>e</u> scription |                   |                                          |
| Main settings        |                   |                                          |
| _TCP/IP se           | ettings           |                                          |
| IP addr              | ress              | DHCP                                     |
| 192.16               | 68.251.252        | 🔿 Off 💿 On                               |
| Net Ma               | ask               | Hostname                                 |
| 255.25               | 55.240.0          |                                          |
| Gatew                | ау                | Domain                                   |
| 0.0.0.0              |                   |                                          |
|                      |                   |                                          |
| ⊢Analog inp          | outs noise filter | _                                        |
| ⊙ Off                |                   |                                          |
| ◯ 50 Hz              |                   |                                          |
| 🔿 60 Hz              |                   |                                          |





Under **TCP/IP Settings** input the network connection settings.

The default setting is DHCP. The Expert Key connection then takes place automatically. If a DHCP server is not being used, it is possible to manually input the IP address, net mask, gateway, host name and domain settings.



#### Info:

When possible, use a fixed IP address for the device because, depending on the DHCP being used, the IP address is only assigned for limited time periods.

Input filter settings under **Analog inputs noise filter**.

Enter the network frequency to activate the filter. The signals being measured by the analog inputs are filtered by various methods depending on the sampling rate. Filtering is automatically deactivated when dynamic signals (e.g. jump or fast oscillating sine) are detected at the analog input.

Set filtering to Off for unfiltered signals.



## 5.3 Analog input

### **Block diagram**



The analog inputs are galvanically isolated as a group from the rest of the system as well as from the PC.

Four dialogue options are available for the sensor type or electrical interface:

- Voltage, e.g. 0...10V
- Current, e.g. 4...20mA
- Thermocouple, e.g. type K, NiCr-NiAl
- Resistive probe, e.g. RTD PT100



nto:

For information on connections refer to Connecting sensors. Technical data is available under Analog inputs.





| V Active             |                |             |               |      |               |                                  |              |
|----------------------|----------------|-------------|---------------|------|---------------|----------------------------------|--------------|
| Channel <u>n</u> ame | Force          |             |               |      |               |                                  |              |
| Unit                 | N              |             |               |      |               |                                  |              |
| D <u>e</u> scription |                |             |               |      |               |                                  |              |
| Main settings        | Advanced set   | tings Senso | rcompensation |      |               |                                  |              |
|                      | Sensor type    | Voltage     |               | •    |               | AIN 1                            |              |
|                      | Subtype        | bipolar     |               | •    |               |                                  | 7            |
| Meas                 | urement range  | +/-         | - 2000 ▼ mV   |      | 7             | <mark>]⁺──<mark>│</mark>┓</mark> | >            |
|                      | Shunt resistor |             | • Ohr         | n    | /m            | ⊻╞ <u>╴</u> ╋╧┤╱                 |              |
|                      |                |             |               |      | Senso         | or <u>Dev</u>                    | m max. ±10 V |
| Conversion           |                |             |               |      |               |                                  |              |
|                      |                | Input       |               |      | Output        |                                  |              |
|                      | Min.           | 0           | mV            | Min. | 0             | N                                |              |
| -                    | Max.           | 1000        | mV            | Max. | 50            | N                                |              |
|                      | Concels sate   |             |               | Tab  |               | - 14011-                         |              |
|                      | Sample rate    |             | <u>, ,</u> 12 | 100  | ai sampie rai | le 140 H2                        |              |
|                      |                |             |               |      |               |                                  |              |
|                      |                |             |               |      |               |                                  |              |
|                      |                |             |               |      |               |                                  |              |
|                      |                |             |               |      |               |                                  |              |

### 5.3.1 Dialogue option / Voltage sensor type

Descriptions for the <u>general elements</u> are available in the previous section.

The dialogue for the *Voltage* sensor type contains the following fields:

| Sensor type | Voltage | • |
|-------------|---------|---|
|             | e       |   |

Select the sensor type or the relevant electrical interface as well as the subtype. The options here are:

- unipolar, i.e. positive signal only
- bipolar, i. e. positive or negative signal





Measurement range +/- 2000 💌 mV

Select here the smallest (most negative) and largest (most positive) measurement range appropriate to the sensor signal.

The options here are:

• Measurement range 100mV, 200mV, 500mV, ... up to 10,000mV

|      | Input |    |      | Output |   |
|------|-------|----|------|--------|---|
| Min. | 0     | mV | Min. | 0      | N |
| Max. | 1000  | mV | Max. | 50     | N |

Enter here the lower and upper reference points for the sensor's linear characteristics.

The example shown means that 0 mV corresponds to 0 N, and 1000 mV to 50 N.

The output range (in the example 0...50N) serves also as the default settings for graphic portrayals in ProfiSignal.

| Sample rate | 10 👻 | Hz   |
|-------------|------|------|
| Somple rate | 190  | 1.14 |

Select the sampling rate for this measuring point.

The options here are:

• sampling frequency 0.2 Hz, 0.5 Hz, 1 Hz, ... up to 100,000 Hz

For slow-changing sensor signals, a low sample rate should be selected. This enhances evening-out/filtering.

For periodic sensor signals that change very frequently, the sample rate should be 10 times higher than the sensor signals. This enhances signal form and signal fidelity.

Total sample rate 140 Hz

The sample rate shown here is the product of the highest sample rate set and the number of active analog inputs.





| 5.3.2 Dialogue option | / Current sensor type |
|-----------------------|-----------------------|
|-----------------------|-----------------------|

|                      |                |               | w expert key. | 100L)  |              |              | ×                            |
|----------------------|----------------|---------------|---------------|--------|--------------|--------------|------------------------------|
| 🔽 Active             |                |               |               |        |              |              |                              |
| Channel <u>n</u> ame | Force1         |               |               | 1      |              |              |                              |
| Jnjt                 | N              |               |               |        |              |              |                              |
| D <u>e</u> scription |                |               |               |        |              |              | ]                            |
| Main settings        | Advanced set   | tings Sensord | ompensation   |        |              |              |                              |
|                      | Sensor type    | Current       |               | •]     |              | AIN 1        |                              |
|                      | Subtype        | unipolar      |               | •]     |              | ĺ.           | 7                            |
| Measu                | irement range  | 4 •           | 20 🔻 m4       | ,      |              |              | ~                            |
|                      | Shani lesisioi | 100           | • Or          |        | Senso        | or Devis     | ce max. ± 20 mA              |
| Conversion           |                | Toput         |               |        | Output       |              |                              |
|                      | Min.           | 4             | mA            | Min.   | 0            | N            |                              |
|                      | Max.           | 20            | mA            | Max.   | 50           | N            |                              |
|                      | Sample rate    | 10            | <b>-</b> ∎    | z Tota | l sample rat | e 140 Hz     |                              |
|                      |                |               |               |        |              |              |                              |
|                      |                |               |               |        |              |              |                              |
|                      |                |               |               |        |              |              |                              |
|                      |                | 4             | Previous      | ∲ Ng   | st ] [[      | <u>✓ 0</u> K | Cancel <b>?</b> <u>H</u> elp |

Descriptions for the <u>general elements</u> are available in the previous section.

The dialogue for the *Current* sensor type contains the following fields:

| Sensor type | Current  | ▼,] |
|-------------|----------|-----|
|             |          |     |
| Subtune     | unipolar | -   |

Select the sensor type or the relevant electrical interface. Select also the subtype. The options here are:

- unipolar, i.e. positive signal only
- bipolar, i. e. positive or negative signal





| Measurement range | 4   | <b>▼</b> 20 | ¥ | mΑ  |
|-------------------|-----|-------------|---|-----|
| Shunt resistor    | 100 |             | ÷ | Ohm |

Select here the smallest (most negative) and largest (most positive) measurement range appropriate to the sensor signal. The options here are:

- For unipolar: 0...20mA, 4...20mA, or an available range
- For bipolar: ± 20mA, or an available range

|      | Input |    |      | Output |   |
|------|-------|----|------|--------|---|
| Min. | 4     | mA | Min. | 0      | N |
| Max. | 20    | mA | Max. | 50     | N |

Enter here the lower and upper reference points for the sensor's linear characteristics.

The example shown means that 4 mA corresponds to 0 N, and 20 mA to 50 N.

The output range (in the example 0...50N) serves also as the default settings for graphic portrayals in ProfiSignal.

Sample rate 10 💌 Hz

Select the sampling rate for this measuring point.

The options here are:

• sampling frequency 0.2 Hz, 0.5 Hz, 1 Hz, ... up to 10,000 Hz

For slow-changing sensor signals, a low sample rate should be selected. This enhances evening-out/filtering.

For periodic sensor signals that change very frequently, the sample rate should be 10 times higher than the sensor signals. This enhances signal form and signal fidelity.

For consistent measurement accuracy for all active analog inputs, it is recommended that you select sampling rates that do not differ by more than 100:1 from one another.

Total sample rate 140 Hz

The sum of set sample rates for all active analog inputs is shown here as a guide.





#### Function: Measuring current in any range

Current measurement is often required where any measurement range and any load resistance can be set.

Example:

The motor current of a DC motor is to be measured in the 0...5 A range. A shunt resistor of 0.2 W is available.



| Sensor type       | Current  |       | •    |      |               | AIN 1           |
|-------------------|----------|-------|------|------|---------------|-----------------|
| Subtype           | unipolar |       | •    |      |               |                 |
| Measurement range | 0 🔹 5    | 000 - | r mA |      |               |                 |
| Shunt resistor    | 0,2      | •     | Ohm  |      | /mA           |                 |
|                   |          |       |      |      | Con           | nection diagram |
| Conversion        | Input    |       |      |      | Output        |                 |
| Min.              | 0        | mA    |      | Min. | 0             | Ν               |
| Max.              | 5000     | mA    |      | Max. | 5             | N               |
| Sample rate       | 10       |       | Hz   | Tota | l sample rate | 140 Hz          |
|                   | <u>.</u> |       | 9    |      |               |                 |



| hannelname           |                |                          |  |
|----------------------|----------------|--------------------------|--|
|                      | Temp1          | ]                        |  |
| Jnjt                 | 0°]            |                          |  |
| D <u>e</u> scription |                |                          |  |
| Main settings        | Advanced set   | tings Sensorcompensation |  |
|                      | Sensor type    | Thermocouple  AIN 1      |  |
|                      | Subtype        | Type K / NiCr-NiAl 👻     |  |
| Meas                 | urement range  |                          |  |
|                      | Shunt resistor |                          |  |
|                      |                | Sensor Device            |  |
| Conversion           |                | connector ang an         |  |
|                      |                | Input Output             |  |
|                      | Min.           | [-2/0] ™C Min, [-2/0] ™C |  |
|                      | Max            | 1372 °C Max, 1372 °C     |  |

### 5.3.3 Dialogue option / Thermocouple sensor type

Descriptions for the <u>general elements</u> are available in the previous section.

The dialogue for the *Thermocouple* sensor type contains the following fields:

| Sensor type | Thermocouple       | • |
|-------------|--------------------|---|
| Subtype     | Tupe K / NiCr-NiAl | • |

Select the sensor type or the relevant electrical interface. Select also the subtype. The options here are:

• Thermocouple type: B, C, E, J, K, L, N, R, S, T, U





Measurement range 270...1372 🔹 C 💌

By selecting the thermocouple type, the measurement range is set. Only the physical temperature unit can be selected here. The options are:

• Celsius (°C), Fahrenheit (°F) or Kelvin (K)

| Sample rate | 1 🔹 | Hz |
|-------------|-----|----|

Select the sampling rate for this measuring point. The options here are:

• Sampling frequency 0.2 Hz, 0.5 Hz, 1 Hz, ... up to 100 Hz

For slow-changing sensor signals, a low sample rate should be selected. This enhances evening-out/filtering.

For consistent measurement accuracy for all active analog inputs, it is recommended that you select sampling rates that do not differ by more than 100:1 from one another.

Total sample rate 140 Hz

The Total sample rate displayed here is the product of the highest set sample rate and the number of active analog inputs.





### 5.3.4 Dialogue option / RTD sensor type

| hannel settir        | ngs 'Analog-In | put (Temp1    | @ Expert Key | 100L)        |              |               | 2                                                          |
|----------------------|----------------|---------------|--------------|--------------|--------------|---------------|------------------------------------------------------------|
| 📝 Active             |                |               |              |              |              |               |                                                            |
| Channel <u>n</u> ame | Temp1          |               |              |              |              |               |                                                            |
| Unit                 | [°C            |               |              |              |              |               |                                                            |
| Description          | -              |               |              |              |              |               |                                                            |
| Main settings        | 0.1            |               | c.           |              |              |               |                                                            |
| Main settings        | Advanced set   | angs   Sensor | compensation |              |              |               |                                                            |
|                      | Sensor type    | Resistance S  | Sensor       | •            | A            | IN 1          | @ 7 Wire                                                   |
|                      | Subtype        | Pt100         |              | •            |              | 33 35<br>400- | <ul> <li>2 Wire</li> <li>3 Wire</li> <li>4 Wire</li> </ul> |
| Meas                 | urement range  | -260 ., 84    | 9 ▼][*       | ç <b>•</b>   | r.1          |               |                                                            |
|                      | Shunt resistor |               | -            | hm,          | <u> </u>     |               |                                                            |
|                      |                |               |              |              | Sensor       | Device        |                                                            |
| Conversion           |                |               |              |              | Conne        | ction diagram |                                                            |
| Conversion           |                | Input         |              | Outp         | ut           |               |                                                            |
|                      | Min.           | -260          | PC           | Min26        | 0            | °C            |                                                            |
|                      | Max.           | 849           | °C           | Max, 849     | 1            | °C            |                                                            |
| -                    |                |               | 112          |              |              |               |                                                            |
|                      | Sample rate    | 1             | • H          | lz Total san | nple rate 14 | 40 Hz         |                                                            |
|                      |                |               |              |              |              |               |                                                            |
|                      |                |               |              |              |              |               |                                                            |
|                      |                |               |              |              |              |               |                                                            |
|                      |                |               |              |              |              |               |                                                            |
|                      |                | 4             | Previous     | & Next       |              | JK 🛛 🗶 Cance  | I 🛛 🤈 Help                                                 |

Descriptions for the <u>general elements</u> are available in the previous section.

The dialogue for the resistance sensor contains the following fields:

| Sensor type | Resistance Sensor | ÷.₩. |
|-------------|-------------------|------|
| Subtune     | Pr100             | •    |

Select the sensor type or the relevant electrical interface. Select also the subtype.

The options are:

• Sensor types: Pt100, Pt200, Pt500, Pt1000





Measurement range 🛛 -260 ... 849 🔹 👻 ℃ 💌

Selecting the type of sensor sets the measurement range. Only the physical temperature unit can be selected here. The options here are:

• Celsius (°C), Fahrenheit (°F) or Kelvin (K)

| Sample rate | 1 🔹 | Hz |
|-------------|-----|----|

Select the sampling rate for this measuring point.

The options here are:

• sampling frequency 0.2 Hz, 0.5 Hz, 1 Hz, ... up to 10 Hz

For slow-changing sensor signals, a low sample rate should be selected. This enhances evening-out/filtering.

For consistent measurement accuracy for all active analog inputs, it is recommended that you select sampling rates that do not differ by more than 100:1 from one another.

Total sample rate 140 Hz

The Total sample rate displayed here is the product of the highest set sample rate and the number of active analog inputs.





### 5.3.5 Sample rates and measurement accuracy

Due to the **Expert Key** having a common A/D converter, the sampling rate for all analog inputs is therefore the analog input with highest sample rate setting.

The total sample rate is the product of the highest set sample rate and the number of active analog inputs. Increasing sampling rate increases signal interference with measurements becoming less accurate.

As a guide to the level of accuracy to be expected, sample rates are color classified:



Green. The sample rate is low enough to synchronize the measurement with the network frequency. Signal interference will be kept to a minimum and documented measurement accuracy will be maintained. This range is especially suited to temperature measurements.

In highly electromagnetic environments, shielding of the connecting cables is strongly recommended



Yellow. Connection cable shielding is generally recommended. The documented measurement accuracy is maintained as far as possible.

For a higher accuracy, reduce the sample rate.



Red. Connection cable shielding is essential. Signal interference increases and there are restrictions of the accuracy of measurement. For temperature measurement, this range is not recommended.

For a higher accuracy, reduce the sample rate.





### 5.4 Digital input with counter function

### **Block diagram**



The digital inputs are galvanically isolated, individually or in pairs, from the rest of the system as well as from the PC. Frequency measuring, as well as counting, can also be achieved. The counter is resettable to real time accuracy.

# The digital input with counter function provides the following three measurement channels



Non-required measurement information should be deactivated. For example, when the required measurement function is frequency measurement, then the two other channels should be deactivated.





### 5.4.1 Dialogue option / Level detector

| Channel settin       | ngs 'Digital-Input' (DII | N 1 @ Expert Key 100L) |        |                    | X                |
|----------------------|--------------------------|------------------------|--------|--------------------|------------------|
| 📝 Active             |                          |                        |        |                    |                  |
| Channel <u>n</u> ame | DIN 1                    |                        | k.     |                    |                  |
|                      |                          |                        |        |                    |                  |
| D <u>e</u> scription |                          |                        |        |                    |                  |
| Main settings        | Advanced settings        |                        |        |                    |                  |
|                      | nverting                 |                        |        | DIN 1              |                  |
|                      |                          |                        |        | 41                 | 1                |
|                      |                          |                        | वि     |                    |                  |
|                      |                          |                        |        | 42                 | L=02.3V          |
|                      |                          |                        | Col    | nnection diagram   | J H = 3.1 50 V   |
|                      |                          |                        |        |                    |                  |
|                      |                          | A Previous             | Next 1 | Λ<br>ΠK<br>K Cance | el <b>2</b> Helo |
| Last change: 0       | 5.07.2010 14:07:02.924   | 1 10 10000             |        |                    |                  |

A description for the <u>general elements</u> are available in the previous section.

### Inverting

This option enables input signal inverting, i.e. High-level and Low-level are interchanged.





### 5.4.2 Dialogue option / Counter

| Active               | igs 'Counter'                            | (Consumption @ I         | Expert Key 100L | )              |              |                    | ×                           |
|----------------------|------------------------------------------|--------------------------|-----------------|----------------|--------------|--------------------|-----------------------------|
| in the second second |                                          |                          |                 |                |              |                    |                             |
| Channel <u>n</u> ame | Consumption                              | į.                       |                 |                |              |                    |                             |
| Jnjt                 | kWh                                      |                          |                 |                |              |                    |                             |
| D <u>e</u> scription |                                          |                          |                 |                |              |                    |                             |
| Main settings        | Advanced set                             | ttings                   |                 |                |              |                    |                             |
|                      |                                          |                          |                 |                | DIN 2        | 2                  |                             |
|                      |                                          |                          |                 | DC<br>DC<br>Se |              | H3<br>H4<br>Device | L = 0 2.3 V<br>H = 3.1 50 V |
| - Reset-Sourc        | .e                                       |                          |                 |                | Connection d | iagram             |                             |
| Chann                | el 🔻                                     | Reset1                   |                 | ·              |              |                    |                             |
| _                    |                                          |                          |                 |                |              |                    |                             |
| - Conversion -       |                                          | Input                    | 3/2             | Output         |              |                    |                             |
| - Conversion -       | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | ALC: NOTE: THE REPORT OF |                 | 0              | kWh          |                    |                             |
| - Conversion -       | Min.                                     |                          | min.            |                |              |                    |                             |

Descriptions for the general elements are available in the previous section.





|      | Input |      | Output |     |
|------|-------|------|--------|-----|
| Min. | 0     | Min. | 0      | kWh |
| Max. | 1000  | Max. | 100    | kWh |

Enter here the lower and upper reference points for the sensor's linear characteristics. The example shown is for the acquisition from an energy meter. The 0 impulse setting corresponds to 0 kWh, and 1000 impulses corresponds to 100 kWh.

The output range (in the example 0...100kWh) serves also as the default settings for graphic portrayals in ProfiSignal.

| Channel | - Recell |  |
|---------|----------|--|
| Channel | THESE(I  |  |

This sets a signal source for resetting the counter. The options here are:

- None
- Application: The source is a channel that is administered by the ProfiSignal software.
- Channel: The source is a channel that is administered by the DataService software.
- Channel (real time): The source is a set digital input from the device.

Only the selection of *Channel* (real-time) offers non-delayed resetting of the counter.



| Active               |              |         |    |      |            |                                |
|----------------------|--------------|---------|----|------|------------|--------------------------------|
| Channel <u>n</u> ame | Speed        |         |    |      |            |                                |
| Unjt                 | RPM          |         |    |      |            |                                |
| D <u>e</u> scription | [            |         |    |      |            |                                |
| Main settings        | Advanced se  | ttings  |    |      |            |                                |
|                      |              |         |    |      |            | DIN 1                          |
|                      |              |         |    |      | DC<br>Sens | + 41<br>42<br>Device H = 3.150 |
|                      |              |         |    |      |            | Connection diagram             |
|                      |              | Input   |    |      | Output     |                                |
| Conversion           |              |         |    | Min  | 0          | BPM                            |
| Conversion           | Min.         | 0       | Hz |      |            | 11.01                          |
| - Conversion         | Min.<br>Max. | 0<br>50 | Hz | Max. | 3000       | RPM                            |

### 5.4.3 Dialogue option / Frequency measurement

Descriptions for the <u>general elements</u> are available in the previous section.

|      | Input |    |      | Output |     |
|------|-------|----|------|--------|-----|
| Min. | 0     | Hz | Min. | 0      | RPM |
| Max. | 50    | Hz | Max. | 3000   | BPM |

Enter here the lower and upper reference points for the sensor's linear characteristics. The example shown is for rotation acquisition. The 0 Hz setting corresponds to 0 U/min, and 50 Hz to 3000 U/min.

The output range (in the example 0...3000 U/min) serves also as the default settings for graphic portrayals in ProfiSignal.



## 5.5 Digital input

## **Block diagram**



The digital inputs are galvanically isolated, individually or in pairs, from the rest of the system as well as from the PC.

The digital input (without counter function) provides only level detection.





### Dialogue

| Channel setti        | ngs 'Digital-Input' (DIN-1 @ Expert Key 10 | 00L)                  | ×            |
|----------------------|--------------------------------------------|-----------------------|--------------|
| 🔽 Active             |                                            |                       |              |
| Channel <u>n</u> ame | DIN 1                                      |                       |              |
|                      |                                            |                       |              |
| D <u>e</u> scription |                                            |                       |              |
| Main settings        | Advanced settings                          |                       |              |
|                      | Inverting                                  | DIN 1                 |              |
|                      |                                            |                       |              |
|                      |                                            |                       |              |
|                      |                                            | 42 L=023              | 3V           |
|                      |                                            | Sensor Device H = 3.1 | 50 V         |
|                      |                                            | Connection diagram    |              |
|                      | 1                                          |                       | I            |
|                      | Previous                                   | ♦ N <u>e</u> xt       | <u>H</u> elp |
| Last change: 0       | 5.07.2010 14:07:02,924                     |                       |              |

Descriptions for the <u>general elements</u> are available in the previous section.

#### Inverting

This option enables input signal inverting, i.e. High-level and Low-level are interchanged.





## 5.6 Analog output

## **Block diagram**



The analog outputs are galvanically isolated as a group from the rest of the system as well as from the PC.

The signal driver has the following output range options:

- Voltage: 0...10V or ± 10V
- Current: 0...20mA, 4...20mA or ± 20mA



#### Info:

For information on connections refer to Connecting actuators. Technical data is available under Analog outputs.





### 5.6.1 Dialogue option

|                      | ngs 'Analog-C                 | utput' (Mor      | nitor1 @ Expe    | ert Key 10   | 0L)               |                    | <b>E</b> X |
|----------------------|-------------------------------|------------------|------------------|--------------|-------------------|--------------------|------------|
| Active               |                               |                  |                  |              |                   |                    |            |
| Channel <u>n</u> ame | Monitor1                      |                  |                  |              |                   |                    |            |
| Jnjt                 | %                             |                  |                  |              |                   |                    |            |
| Description          |                               |                  |                  |              |                   |                    |            |
| Main settings        | Advanced set                  | tings            |                  |              |                   |                    |            |
|                      | Output mode                   | Current          | •                |              |                   | AOUT 1             |            |
|                      | Output range                  | 420              | ▼ m4             |              | _                 | 29<br>30<br>30     | ]          |
| Source               |                               |                  |                  |              |                   | Connection diagram |            |
| Chan                 | nel 🔻                         | Signal1          |                  |              | 2                 |                    |            |
| 110 <sup></sup>      | wigening and                  |                  |                  |              |                   |                    |            |
|                      | Initial value                 | U.               | unic             |              |                   |                    |            |
| - Conversion         | Initial value                 | 0.               | Caraic           |              |                   |                    |            |
| - Conversion         | Initial value                 | Input            |                  |              | Output            |                    |            |
| - Conversion         | Initial value                 | Input<br>4       | 2 ann            | Min.         | Output<br>4       | mĄ                 |            |
| - Conversion         | Initial value<br>Min.<br>Max. | Input<br>4<br>20 | 2<br>2<br>2<br>2 | Min.<br>Max. | Output<br>4<br>20 | mA<br>mA           |            |

Descriptions for the general elements are available in the previous section.

|             | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |   |
|-------------|-----------------------------------------|---|
| Output mode | Current                                 | • |

Select the electrical signal:

- Voltage
- Current





Output range 4.. 20 💌 mA

- For voltage: 0...10V or ± 10V
- For current: 0...20mA, 4...20mA or ± 20mA

| Channel 👻     | Signal1 |        | • <u>P</u> |
|---------------|---------|--------|------------|
| مراجع احتلتها | 0       | i unit |            |

Select here the signal source that controls the output. The options here are:

ApplicationThe source is a channel that is administered by the ProfiSignal<br/>software.ChannelThe source is a channel that is administered by the DataService<br/>software.

Manual value The source is a set value (manual value).

The *Initial value* is output as long as no valid output value is available (after switching on the device).

|      | Input |   |      | Output |    |
|------|-------|---|------|--------|----|
| Min. | 4     | % | Min. | 4      | mA |
| Max. | 20    | % | Max. | 20     | mA |

Enter here the lower and upper reference points for the linear output characteristics.

The example shown is for monitor output at 4...20 mA. The settings have the following meaning:

0 % corresponds to 4 mA, and 100 % to 20 mA.

The output range (in the example 0...100 %) serves also as the default settings for graphic portrayals in ProfiSignal.



The displayed value in the **DataService Configurator** and **ProfiSignal** is the conversion *input range*! The output range is measurable only at the terminals.


## 5.7 Digital output

## **Block diagram**



The digital outputs are galvanically isolated, individually or in pairs, from the rest of the system as well as from the PC.



For information on connections refer to Connecting actuators. Technical data is available under Digital outputs.





### 5.7.1 Dialogue option

| Channel settir       | ngs 'Digital-In/Output' (Alarm1 @ Expert Key 100L) 🧮                             |
|----------------------|----------------------------------------------------------------------------------|
| 🔽 Active             |                                                                                  |
| Channel <u>n</u> ame | Alarm1                                                                           |
|                      |                                                                                  |
| Description          |                                                                                  |
| Main settings        | Advanced settings                                                                |
|                      | Mode Output  DIN 9 / DOUT 8                                                      |
|                      | Inverting<br>57++<br>58+<br>0 V<br>0 V<br>0 V<br>0 V<br>0 V<br>0 V<br>0 V<br>0 V |
| Source               | nel 🔹 Signal1 👻 🔎                                                                |
| (analy)              | Initial value Off O On                                                           |
|                      |                                                                                  |
|                      | Previous ♦ Next ✓ QK ★ Cancel ? Help                                             |

Descriptions for the general elements are available in the previous section.

#### Inverting

This option enables output signal inverting, i.e. High-level and Low-level are interchanged.





| Channel 👻     | Signal1     | • |
|---------------|-------------|---|
| Initial value | ο Off Ο Ω Ω |   |

Select here the signal source that controls the output. The options here are:

- Application The source is a channel that is administered by the ProfiSignal software.
- Channel The source is a channel that is administered by the DataService software.
- Manual value The source is a set value (manual value).

The *Initial value* is output as long as no valid output value is available (after switching on the device).



## 5.8 **Digital output with PWM function**

## **Block diagram**



The digital outputs are galvanically isolated, individually or in pairs, from the rest of the system as well as from the PC.





PWM signal generation functions with a preset base frequency. The duty cycle is controlled.





#### Info:

For information on connections refer to Connecting actuators. Technical data is available under Digital output with PWM function.





### 5.8.1 Dialogue option

| Active               |                      |                             |         |     |               |                                                        |          |                                    |
|----------------------|----------------------|-----------------------------|---------|-----|---------------|--------------------------------------------------------|----------|------------------------------------|
|                      |                      |                             |         |     |               |                                                        |          |                                    |
| Channel <u>n</u> ame | )immer1              |                             |         |     |               |                                                        |          |                                    |
| Jnjt 🗍               | m                    |                             |         |     |               |                                                        |          |                                    |
| Description          |                      |                             |         |     |               |                                                        |          |                                    |
| Main settings 🖌      | dvanced set          | tings                       |         |     |               |                                                        |          |                                    |
| Swit                 | ching mode           | PWM                         | •       |     |               | DOUT                                                   | 1        |                                    |
| Bass                 | e frequencu          | 5000                        | U       |     |               | 60                                                     |          |                                    |
| 563                  | - 10446169           | Invertin                    | g       |     | ,<br>•        | 09 0++<br>71 0+<br>V □ 72 0                            | Actuator | max. 50 V<br>max. 30 W<br>max. 1 A |
| - Source             | - noquency           | Invertin                    | g       |     | •             | 09 0++<br>71 0+<br>V ■ 72 0<br>evice                   | Actuator | max. 50 V<br>max. 30 W<br>max. 1 A |
| - Source             |                      | Signal1                     | g       |     |               | 09 0+++<br>71 0+<br>V ■ 72<br>evice<br>Connection d    | Actuator | max. 50 V<br>max. 30 W<br>max. 1 A |
| Source               | initial value        | Signal1                     | g<br>Im |     |               | 09 0++<br>71 +<br>√ 72 0<br>voice Connection d         | Actuator | max. 50 V<br>max. 30 W<br>max. 1 A |
| Source<br>Channel    | initial value        | Signal1                     | g<br>Im |     |               | 09 0++<br>71 0+<br>∨ ∞ 72 0<br>evice 0<br>Connection d | Actuator | max. 50 V<br>max. 30 W<br>max. 1 A |
| - Source<br>Channel  | nitial value         | Signal1<br>0.               | g<br>Im |     |               | 09 0+++<br>71 0+<br>√ 72 0<br>evice                    | Actuator | max. 50 V<br>max. 30 W<br>max. 1 A |
| - Source<br>Channel  | nitial value<br>Min. | Signal1<br>0.<br>Input<br>0 | g<br>Im | Min | Output<br>0,0 | 09 0++<br>71 +<br>√ 72 0<br>evice<br>Connection d      | Actuator | max. 50 V<br>max. 30 W<br>max. 1 A |

A description for the general elements are available in the previous section.

| Switching mode | PWM  | • |    |
|----------------|------|---|----|
| Base frequency | 5000 | • | Hz |

Select the base frequency for the PWM signal.

The options here are:

• Base frequency: 5Hz, 10Hz, 20Hz, ...10000Hz





| Channel 💌 | Signal1 | - > |
|-----------|---------|-----|
| 1.4.1     |         |     |

Select here the signal source that controls the output.

The options here are:

| Application  | The source is a channel that is administered by the ProfiSignal software. |
|--------------|---------------------------------------------------------------------------|
| Channel      | The source is a channel that is administered by the DataService software. |
| Manual value | The source is a set value (manual value).                                 |

The *Initial value* is output as long as (after switching on the device) no valid output value is available.

|      | Input |    |      | Output |   |
|------|-------|----|------|--------|---|
| Min. | 0     | Im | Min. | 0,0    | % |
| Max. | 500   | Im | Max. | 100,0  | % |

Enter here the lower and upper reference points for the linear output characteristics.

The example shown is for the activation of a required luminous power. The settings have the following meaning:

0 Im corresponds to 0 %, and 500 Im to 100 %.

The input range (in the example 0...500 lm) is also the setting for the graphical portrayal in ProfiSignal.







## 5.9 Device settings save and load

### Saving a configuration

Select **Save device settings** from the device's *context menu* and save the entire settings for the **Expert Key** device.

| Channel           | 🛆 Value                                |
|-------------------|----------------------------------------|
| Expert Key 100L ' | Properties<br>Show device informations |
|                   | Save device settings                   |
|                   | Load device settings                   |

## Loading a configuration

Select **Load device settings** from the device's *context menu* and load previously saved channel settings for the **Expert Key** device.

The separate channels of the Expert device are identified in ProfiSignal by way of the unique ID. If you load a saved configuration from device A into device B on the same PC, the unique IDs will be automatically replaced.





### **Possible conflicts**

If the same configuration is loaded from different PCs into multiple devices, the channels of the multiple devices will have the same IDs. When you connect the devices to the same PC, the channels of the last connected devices will not be displayed. When connecting additional devices, you will receive a corresponding message in the Configurator.

To resolve this conflict, do the following:

- With more than 2 devices, connect only 1 device at first and then carry out the following steps per extra device.
- If you have no saved configuration data on hand for the second device, firstly connect the second device to the PC and save the configuration data from this device.
- Reset the second device's configuration.
- Now connect both devices to the PC. Both devices are now connected, error-free, to the PC.
- Load the saved configuration into the second device. Unique IDs will then be assigned automatically.



#### Info:

Note that only one configuration can be loaded from the same device type (**Expert Key 100** or **Expert Key 200**). The design type (L, C or M) is irrelevant.





## 5.10 Configuration reset

### Resetting a configuration

Select **Reset configuration** from the connection's *context menu* to reset the current settings. The configuration for all channels will then be reset to the settings as at delivery.

The separate Expert device channels are identified in ProfiSignal by a unique ID. These IDs are renamed during resetting.





## 5.11 **Device information**

### Displaying

Select **Show device informations** from the device's *context menu*.



This opens the following window.

| Device information  |                            |
|---------------------|----------------------------|
| Device type:        | Expert Key 100L            |
| Board temperatur:   | 47.9 °C                    |
| Serial number:      | 50000250                   |
| PCB:                | UNE100 V1.2.4              |
| Firmware version:   | 1.03.00.00                 |
| FPGA version:       | c3.01.6 <mark>0.0</mark> e |
| CPU version:        | 0.00.00.60                 |
| ADIOC version:      | 23.18.10.12                |
| Calibration system: | MoKa2010 V1.0.0.5          |
| Calibration date:   | 22.07.2010 15:35:30        |
| Adjustment date:    | 22.07.2010 15:16:19        |
| Start-up date:      | а.                         |
|                     | Close                      |
|                     |                            |

This provides an overview of useful information concerning your device. When you have technical queries concerning your device, you should access this window to acquire important information, e.g. the serial number or the firmware version.





## 5.12 **Device firmware**

#### **Updating firmware**

| ame                       | V                                                                                                                                              | Host/IP                         | Connect | State  | Drivertype  | Version               |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------|--------|-------------|-----------------------|
| 🗉 – 🗐 DataService ID 1760 |                                                                                                                                                | PC97                            | Yes     | Online | DataService | DataService V2.2.99.1 |
|                           | Connect (temporary)<br>Disconnect (tempora<br>Connect automatical<br>Remove driver (conn<br>Settings<br>Reset configuration<br>Update firmware | ry)<br>ly (temporan)<br>ection) | 0       |        |             |                       |

#### Select the tab Connections

The following dialogue appears after clicking Update firmware from the context menu:

|                     | spencey root                                                                                                                 |                          |
|---------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| Firmware version: 1 | .02.60.00                                                                                                                    |                          |
| Firmware file:      | \ExpertKey_Firmware_01.02.45.12.fw100                                                                                        | Select                   |
| E                   | Do not abort update, remove power or unplug the device while<br>update is in progress. Otherwise the device may damaged sust | the firmware<br>ainable! |
|                     | 0%                                                                                                                           |                          |

Click *Select* to select the file containing the new firmware. Commence update by clicking *Start update*.





#### **Device synchronization** 6

Multiple devices can be time-synchronized for the transmission of measurement data.

A digital reference signal is output from <u>one</u> of the devices and simultaneously received by <u>all</u> participating devices. The time-synchronization of the measurement data then takes place at a PC.

### Wiring

Wiring example for two **Expert Key 100L** type devices:



#### Expert Key 100L





Wiring example for two **Expert Key 200L** type devices:



## Configuration

For device-to-device synchronization, one digital output and one digital input are used. These connections are then no longer available for general use.

#### **Configuration example with Expert Key 100L:**

| 📝 Aktiv               |                                                                                                                                       |        |          |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------|----------|
| Kanal <u>n</u> ame    | DOUT 4                                                                                                                                | Ì.     |          |
| Ejnheit               |                                                                                                                                       |        |          |
|                       |                                                                                                                                       |        |          |
| B <u>e</u> schreibung | 1.                                                                                                                                    |        |          |
|                       |                                                                                                                                       |        |          |
| Grundeinste           | Ilungen Weitere Einstellungen                                                                                                         |        |          |
| Grundeinste           | Ilungen Weitere Einstellungen                                                                                                         |        |          |
| Grundeinste           | schalt-Modus Standard -                                                                                                               | DOUT 4 | 1        |
| Grundeinste           | Illungen Weitere Einstellungen Schalt-Modus Standard + Grundfrequenz 1000 + Hz                                                        | DOUT 4 |          |
| Grundeinste           | Schalt-Modus Standard -<br>Grundfrequenz 1000 - Hz                                                                                    |        |          |
| Grundeinste           | Illungen Weitere Einstellungen Schalt-Modus Standard Grundfrequenz 1000 + Hz Invertierung Externe Gerätesynchronisation               |        |          |
| Grundeinste           | Illungen Weitere Einstellungen<br>Schalt-Modus Standard •<br>Grundfrequenz 1000 • Hz<br>Invertierung<br>Externe Gerätesynchronisation |        | may 50 V |





| Kanalkonfigu          | ration 'Digitaleingang' (DIN 2@Expert Key | 100L)          | ×          |
|-----------------------|-------------------------------------------|----------------|------------|
| 🔽 Aktiv               |                                           |                |            |
| Kanal <u>n</u> ame    | DIN 2                                     |                |            |
|                       |                                           |                |            |
| B <u>e</u> schreibung |                                           |                |            |
| Grundeinstell         | ungen Weitere Einstellungen               |                |            |
|                       | Invertierung                              | DIN 2          |            |
|                       | 🔽 Gerät-zu-Gerät-Synchronisation          |                |            |
|                       | <b>A</b>                                  | + 43           |            |
|                       |                                           |                |            |
|                       | Choose this Option                        | - 44<br>Sancar | L=02,3V    |
|                       | for connection DIN 2                      | Anschluss-Bild | 11-3,130 V |

Refer also to the Synchronization section under technical data.





## 7 Technical specifications

### **Power supply**

#### Voltage range:

9...24 V<sub>DC</sub>

### Max. power input of the device:

6 W



## 7.1 Analog inputs

#### Adjustable sample rate for each analog input:

1...5000 Hz, when <u>all</u> 14+1 analog inputs are active for Expert Key 100

1...2000 Hz, when <u>all</u> 28+2 analog inputs are active for Expert Key 200

Reducing the number of active analog inputs increases the maximum sample rate for the remaining analog inputs.

#### Maximum sampling rate:

100,000 measurements/s. Reduced to 10,000 measurements/s for active temperature or current measurements.

#### measurement range, voltage:

| ± 10 V   | or | 010 V   |
|----------|----|---------|
| ± 5 V    | or | 05 V    |
| ± 2 V    | or | 02 V    |
| ± 1 V    | or | 01 V    |
| ± 500 mV | or | 0500 mV |
| ± 200 mV | or | 0200 mV |
| ± 100 mV | or | 0100 mV |

#### Measurement range, current:

0...20 mA or 4...20 mA or available value Possible load resistance:

10/20/50...500  $\Omega$  or available value





#### A/D converter resolution:

#### 18 bit

| Measurement<br>range | Resolution |
|----------------------|------------|
| ± 10 V               | 76 µV      |
| ± 5 V                | 38 µV      |
| ± 2 V                | 19 µV      |
| ± 1 V                | 9.5 µV     |
| ± 500 mV             | 4.7 µV     |
| ± 200 mV             | 2.4 μV     |
| ± 100 mV             | 1.2 µV     |

#### Input impedance:

 $2\,\ldots\,10~\text{M}\Omega$ 

#### Input protection against permanent voltage surge:

 $\pm 40V$ 

#### **ESD-input protection:**

Yes

#### Max. sensor-impedance:

<1k $\Omega$ 

#### **Galvanic isolation:**

All analog inputs (including constant current sources) are galvanically isolated. To the rest of the system as well as to the PC.

With an isolation voltage of >=1,000  $V_{DC}$ .

#### **Operating type/ sampling procedure:**

Each individual analog input can be *active* or *inactive*. All active analog inputs are sequentially and continuously sampled. An automatic oversampling averages / evens-out the measurement values.





#### Measurement accuracy, voltage:

| Measurement<br>range | Measurement<br>accuracy |  |
|----------------------|-------------------------|--|
| ± 10 V               | 0.02%                   |  |
| ± 5 V                | 0.05%                   |  |
| ± 2 V                | 0.05%                   |  |
| ± 1 V                | 0.1%                    |  |
| ± 500 mV             | 0.1%                    |  |
| ± 200 mV             | 0.2%                    |  |
| ± 100 mV             | 0.2%                    |  |

Table applies to 14 active analog-inputs each with a sample rate of 2 Hz. DC-signal. 25° ambient temperature. Measurement accuracy in % of unipolar measurement range.

#### Measurement accuracy, current:

| Measurement<br>range | Measurement<br>accuracy |  |
|----------------------|-------------------------|--|
| 020 mA               | 0.05%                   |  |
| 420 mA               | 0.05%                   |  |

Table applies to 14 active analog-inputs each with a sample rate of 2 Hz. DC signal. Load resistance with 0,05% tolerance. 25° ambient temperature. Measurement accuracy in % of end value.

#### Measurement accuracy, temperature, RTD:

| Туре  | Measurement<br>range | Measurement<br>accuracy |
|-------|----------------------|-------------------------|
| Pt100 | -260849 °C           | 0.1%                    |

Table applies to 14 active analog-inputs each with a sample rate of 2 Hz. 4-wire connection. 25° ambient temperature. Measurement accuracy in % of end value.





#### Measurement accuracy, temperature, thermocouple:

| Туре          | Measurement range | Measurement accuracy |
|---------------|-------------------|----------------------|
| K / NiCr-NiAl | -2701,372 °C      | 0.2%                 |

Table applies to 14 active analog-inputs each with a sample rate of 2 Hz. Internal compensation measuring point. 25° ambient temperature. Warm-up time > 30 min. Measurement accuracy in % of end value - following sensor compensation procedure.

#### Power supply for RTD:

Constant 0.2 mA.

#### Compensation measuring point for thermocouple:

An additional sensor (RTD type PT100 using 4-wire-technology) is internally attached at the screw terminals.



## 7.2 Digital inputs with counter function

#### Max. input frequency for the counter:

1 MHz

#### Time resolution:

1 µs

#### Counter breadth, hardware / software:

32 bit / 64 bit

#### Permissible input voltages:

Positive right-angle signal, 5 V, 12 V, 24 V or 48 V

#### **Input current:**

Type 1.5 mA

#### Low-level, High-level, hysteresis:

Low: <2.3V, high: >3.1V

#### Measurement range of frequency measurement:

0.1 Hz to 1 MHz

#### Accuracy of frequency measurement:

max. 0.01% of input frequency

#### Operating type/ sampling procedure:

All level changes (according to High or Low) are transferred as measurement values. The counter status is updated at 10 measurement values/s. Frequency measurement is performed via a PC.

# Sum of input frequency for transmitted level-change for <u>all</u> active digital inputs:

10 kHz





#### Galvanic isolation:

All digital inputs with counter function are galvanically isolated in pairs - to the rest of the system and to the PC. With an isolation voltage of >=1000V<sub>DC</sub>.



## 7.3 Digital inputs

#### Max. input frequency:

10 kHz

#### Time resolution:

50 µs

#### Permissible input voltages:

4.5 to 50V

#### Input current:

Type 2.7 mA

#### Low-level, High-level, hysteresis:

Low: <2.4V, high:> 2.9V

#### Operating type/ sampling procedure:

All level changes (according to High or Low) are transferred as measurement values.

# Sum of input frequency for transmitted level-change for <u>all</u> active digital inputs:

10 kHz

#### Galvanic isolation:

All digital inputs have separate galvanic isolation - from the rest of the system as well as from the PC.

With an isolation voltage of >=1000 <sub>DC</sub>.



## 7.4 Analog outputs

#### A/D converter resolution:

16 bit

#### Output type and range:

| Voltage:   | 010 V or ± 10 V                                      |
|------------|------------------------------------------------------|
| Current:   | 020 mA or 420 mA or ± 20 mA                          |
| Switching: | Software/automated selection of voltage/current mode |

#### Possible load resistance:

50 ... 500  $\Omega$ 

#### Max. output rate per analog output (controlled via DataService/ProfiSignal):

50 Hz

#### Galvanic isolation:

All analog inputs have galvanic isolation to the rest of the system and to the PC. With an isolation voltage of >=1000  $\rm V_{\rm DC}.$ 

#### Accuracy:

| Range             | Accuracy |
|-------------------|----------|
| 010 V, ± 10 V     | 0.05%    |
| 0/420 mA, ± 10 mA | 0.05%    |

Table applies to a 25° ambient temperature. Accuracy in % of unipolar measurement range.



## 7.5 Digital outputs

#### Max. switching delay:

0.5 ms

#### Max. permanent switching frequency:

10 Hz

#### Max. switching capacity:

30W

#### Max. switching voltage and current:

30 V / 1 A 40 V / 0.75 A 50 V / 0.6 A

#### Inverse diode:

Integrated, max. 2 A

#### Galvanic isolation:

All digital outputs have separate galvanic isolation - from the rest of the system as well as from the PC.

With an isolation voltage of >=1000  $V_{DC}$ .



## 7.6 Digital outputs with PWM function

#### **PWM-basic frequency and duty cycle resolution:**

10,000Hz / 1:100 5,000Hz / 1:200 2,000 Hz / 1:500 1,000 Hz / 1:500 ... 10 Hz / 1:500 5 Hz / 1:500

#### Max. switching capacity:

30 W

#### Max. switching voltage and current:

30 V / 1 A 40 V / 0.75 A 50 V / 0.6 A

#### Inverse diode:

Integrated, max. 2 A

#### Max. output rate per digital output (controlled via DataService/ProfiSignal):

10 Hz

#### Galvanic isolation:

All digital outputs with PWM function are galvanically isolated in pairs - from the rest of the system as well as from the PC.

With an isolation voltage of >=1000 V<sub>DC</sub>.



## 7.7 Synchronization

Synchronizing multiple devices

Max. number of devices:

4

Synchronization signal:

Right-angle, 2 Hz

### Synchronization accuracy:

± 10 µs



## 7.8 **Device specification**

#### Microprocessor, FPGA, Memory

#### **Microprocessor:**

50..80 MHz, 32 bit

#### FPGA:

Xilinx, Spartan family

#### Memory:

Volatile: SDRAM, 32 MByte Non-volatile: Flash-EPROM, 2...8 MByte

#### **USB** port

#### **Transmission speed:**

High Speed, up to 480MBit/s, or Full Speed, 12MBit/s

#### Driver type and operation:

Transmission mode is *Bulk* 

#### **USB-port:**

Typ B, standard

#### LAN/Network interface

#### **Transmission standard:**

10Base-T

#### **Transmission speed:**

10 or 100 MBit/s





### Physical

#### **Device dimensions:**

Expert Key L: 50 x 185 x 215 mm (B x H x D) Expert Key C: 280 x 57 x 208 mm (B x H x D)

#### **Device weight:**

Expert Key L: 750 g Expert Key C: 1.5 kg

#### Signal cable diameter for connecting terminals:

0.14 to 2.5 mm<sup>2</sup>

### Environment

#### Environmental compatibility:

Electronics conform to RoHS directives.

#### Other

#### Permissible ambient temperature:

0...50 °C