

ADwin-Pro II

System and hardware description

For any questions, please don't hesitate to contact us:

Hotline:	+-
Fax:	+
E-Mail:	in
Internet	w

-49 6251 96320 -49 6251 5 68 19 nfo@ADwin.de vww.ADwin.de

Jager Computergesteuerte Messtechnik GmbH Rheinstraße 2-4 D-64653 Lorsch Germany

Table of contents

Table of contents
Typographical Conventions IV
1 The <i>ADwin-Pro II</i> system
2 How to Install an <i>ADwin-Pro II</i> System
3 Operating Environment
4 Enclosures for the ADwin-Pro II System 4 4.1 ADwin-Pro II 5 4.2 ADwin-Pro II-DC 6 4.3 ADwin-Pro II-BM 7 4.4 ADwin-Pro II-light 8 4.5 ADwin-Pro II-light-DC 9
4.6 <i>ADwin-Pro II-mini</i>
5.1 Unsupported Pro I modules115.2 Setting the module's addresses (Pro I modules, too)115.3 Processor modules135.4 Pro II: Multi-IO Modules185.5 Pro II: Analog Input Modules465.6 Pro II: Analog Output Modules855.7 Pro II: Digital-I/O Modules975.8 Pro II: Extension and Interface Modules128
6 Calibration1906.1 General information1906.2 Calculation basis1916.3 Calibrating a module192
7 Accessories1957.1 LEMO Cable Sets for ADwin-Pro Systems1957.2 LEMO Adapter sets1957.3 Cables / Terminal blocks for OPT-16 and TRA-161967.4 Reference addresses196
Annex A-1 A.1 RoHS Declaration of Conformity A-1 A.2 List of Modules A-1

Typographical Conventions

You find a "note" next to

tee an error free operation. advice for efficient operation.

"Warning" stands for information, which indicate damages of hardware or software, test setup or injury to persons caused by incorrect handling.

- information, which absolutely have to be considered in order to guaran-

(P

_

"Information" refers to further information in this documentation or to other sources such as manuals, data sheets, literature, etc.

File names and paths are placed in <angle brackets> and characterized in the font Courier New.

Program commands and user inputs are characterized by the font $\ensuremath{\texttt{Courier}}$ New.

Source code elements such as commands, variables, comments and other text are characterized by the font Courier New and are printed in color.

Bits in data (here: 16 bit) are referred to as follows:

Bit No.	15	14	13		01	00
Bit value	2 ¹⁵	2 ¹⁴	2 ¹³		2 ¹ =2	2 ⁰ =1
Synonym	MSB	-	-	-	-	LSB

<C:\ADwin\ ...>

Program text

Var_1

1 The ADwin-Pro II system

The *ADwin-Pro II* system is an external processing system with modular expansion options. Depending on applications, the different enclosures can be equipped with classic *ADwin-Pro I* and new *ADwin-Pro II* modules.

When the *ADwin-Pro II* system was developed great attention was paid to the electromagnetic compatibility. The *ADwin-Pro II* system and all available input and output modules have the CE sign and can therefore be configured differently later if necessary.

Each *ADwin-Pro II* system needs a processor module. It communicates via Ethernet with the PC or notebook.

In order to meet the various requirements for measurement and control tasks the system can be equipped with the following modules:

- analog input modules and analog output modules
- digital input modules and digital output modules
- counters
- filters, isolation amplifiers
- amplifiers for thermocouples and resistance thermometers
- serial communication interfaces (CAN, RSxxx, Fieldbus)
- storage / read module for PCMCIA storage media

All modules have a revision identifier written on the module front, e.g. Rev. A2, Rev. B3, Rev. C3. Earlier delivered modules have no identifier; they are to be considered as revision "Rev. A". *ADwin-Pro II* modules have the revision identifier Rev. E1 or higher.

Different revision characters mean different module properties and are described separately.

The revision identifier is followed by a minor counting number, which is mainly used for internal purposes of Jaeger Computergesteuerte Messtechnik GmbH.

Applicable modules

Revision Identifier

	2 How to Install an ADwin-Pro II System
	Please keep strictly to the following order:
	 Start with the manual "ADwin installation": Install software and interface drivers from the ADwin-CDROM. Initialize the data connection from PC to ADwin system and do an operational test. The power connectors are described in chapter 4 "Enclosures for the ADwin-Pro II System". Follow the notes in chapter 3 "Operating Environment".
	2. Set module addresses, see chapter 5.2 on page 11.
	3. Do your first steps with the <i>ADbasic</i> Tutorial.
	4. Programming in ADbasic:
	The <i>ADbasic</i> manual describes the real-time development environment, the structure of an <i>ADbasic</i> program and gives hints for optimizations.
	 The <i>ADbasic</i> instructions are described in the online help of the development environment or in these documents: <i>ADbasic</i> manual: Basic instructions for calculation, program structure and process control. <i>ADwin-Pro II</i> software manual: Instructions and hints for accessing the Pro modules.
	For operation, please pay attention to the notes in this manual concerning the respective modules.
	Please note:
	For <i>ADwin</i> systems to function correctly, adhere strictly to the information pro- vided in this documentation and in other mentioned manuals.
Qualified personnel	Programming, start-up and operation, as well as the modification of program parameters must be performed only by appropriately qualified personnel.
	Qualified personnel are persons who, due to their education, experience and training as well as their knowledge of applicable technical stan- dards, guidelines, accident prevention regulations and operating condi- tions, have been authorized by a quality assurance representative at the site to perform the necessary acivities, while recognizing and avoiding any possible dangers. (Definition of qualified personnel as per VDE 105 and ICE 364).
Availability of the documents	This product documentation and all documents referred to, have always to be available and to be strictly observed. For damages caused by disregarding the information in this documentation or in all other additional documentations, no liability is assumed by the company <i>Jäger Computergesteuerte Messtechnik GmbH</i> , Lorsch, Germany.
Legal information	This documentation, including all pictures is protected by copyright. Reproduc- tion, translation as well as electronical and photographical archiving and mod- ification require a written permission by the company <i>Jäger Computergesteu-</i> <i>erte Messtechnik GmbH</i> , Lorsch, Germany.
	OEM products are mentioned without referring to possible patent rights, the existence of which, may not be excluded.
Subject to change.	Hotline address: see inner side of cover page.

3 Operating Environment

The ADwin-Pro II device must be earth-protected, in order to

- build a ground reference point for the electronic
- conduct interferences to earth.

Connect the GND clamp / plug via a short low-impedance solid-type cable to the central earth connection point of the controlled system. The GND plug is internally connected with ground and the enclosure.

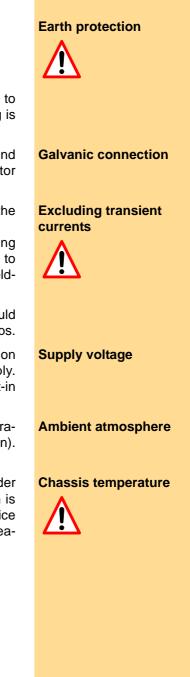
In the Ethernet cable the data lines are galvanically isolated, but the ground potentials are connected, because the shielding of the Ethernet connector (RJ-45) is connected to GND.

Transient currents, which are conducted via the aluminum enclosure or the shielding, have an influence on the measurement signal.

Please, make sure that the shielding is not reduced, for instance by taking measures for bleeding off interferences, such as connecting the shielding to the enclosure just before entering it. The more frequently you earth the shielding on its way to the controlled system the better the shielding will be.

Use cables with shielding on both ends for signal lines. Here too, you should reduce the bleeding off of interferences via the enclosure by using screen clips.

Operate the device with the defined and fitting supply voltage. For operation with an external power supply, the instructions of the manufacturer apply. Close the device for operation, use cover plates to cover gaps between built-in modules.


ADwin-Pro II is designed for operation in dry rooms with an ambient temperature of $+5^{\circ}C \dots +50^{\circ}C$ and a relative humidity of $0 \dots 80\%$ (no condensation). The device may be operated in a control cabinet or mobile (e.g. in a car).

The temperature of the chassis (surface) must not exceed $+60^{\circ}$ C, even under extreme operating conditions – e.g. in a control cabinet or if the system is exposed to the sun for a longer period of time. You risk damages at the device or not-defined data (values) are output which can cause damages at your measurement device under unfavorable circumstances.

For use in a control cabinet, please note:

- The device shall not pe placed above strong heat sources, e.g. a high power transformer.
- Ventilation inside the control cabinet towards and from the ADwin-Pro II device mus be provided.

Especially, the ventilation slots of the device must be kept free, so that the device can lead off its generated heat completely.

4 Enclosures for the ADwin-Pro II System

The different sizes for the enclosures depend on the number of slots and the kind of power supply.

Enclosure	Number of Slots	Power sup	ply
ADwin-Pro II	16	100V240V	AC
ADwin-Pro II-DC	16	10V35V	DC
ADwin-Pro II-BM	15	100V240V	AC
ADwin-Pro II-light	7	100V240V	AC
ADwin-Pro II-light-DC	7	10V35V	DC
ADwin-Pro II-mini	5	10V36V	DC

The number of slots is given for Pro II modules. If Pro I modules be used–in combination with Pro II modules or not–less modules fit into the enclosure.

For the slot area (including power supply slot) the following dimensions apply:

1 HP = 1/5 inch = 5.08 mm $1 \text{ U} = 1\frac{3}{4} \text{ inch} = 44.45 \text{ mm}$

The slots mostly have a width of 5 HP = 1 inch.

Plug-in a module

You plug-in a module into the enclosre like this:

- Switch off the ADwin device! A module may sustain damage if you plug it in or out with the power supply switched on.
- Remove one or more cover plates at the wanted position, until the bearings be seen at the left edge: one upper and one lower bearing.
 - Pay attention to the color of the bearings. There are different, offset bearings for Pro I and Pro II modules: White bearings: Pro II modules. Black bearings: Pro II modules.
 - The processor module has a fixed position, no other position can be used.
- Insert the board carefully into both bearings, plug ahead. If positioned correctly the module cannot be skewed.
- Push the module into the enclosure. At the end the push gets harder while the module plug slides into the female connector of the back plane.

The module's front panel should butt against the enclosure.

- Fix the module with the screws at top and bottom of the front panel.
- If there are, close the gaps between plugged-in modules using the cover plates. There are plates with 2, 3 or 5 HP width.

4.1 ADwin-Pro II

The standard enclosure for the *ADwin-Pro II systems*. The backplane of the enclosure connects the processor module with the other modules.

The system fuse is located in a slot in the power supply unit above the female connector for the power supply cable (rear of the enclosure).

Number of Slots	16
Main dimensions (I x w x h) Slot area (w x h)	336mm × 447.5mm × 146mm (incl. feet) 84 HP × 3 U
Power supply unit	min. 70W, 100V240VAC at 50/60Hz switching power supply
Fuse	5A, delayed-action fuse

Fig. 1 - Enclosure ADwin-Pro II: Specification

At the rear of the enclosure, above the power supply connector you will find a label with the revision number:

Revision	Release	Previous versions
E1		<i>ADwin-Pro II</i> : New enclosure design and new back plane with Pro I and Pro II bus.

The Pro II enclosure is designed for both Pro I and Pro II modules: The back plane comprises the Pro I bus as well as the Pro II bus. The processor module runs both buses in parallel.

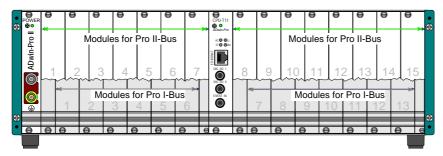


Fig. 2 - Enclosure ADwin-Pro II

Please note that modules for Pro I bus (grey in fig. 2) and for Pro II bus have different plug-in positions. You recognize the right position easily by the color of the bearings:

- White bearings: Modules for Pro II bus.
- Black bearings: Modules for Pro I bus.

Output modules Pro-AOut-x with Rev. A may not be used for technical reasons.

The processor module must be plugged-in at the middle position (white bearings).

There is a gap of half a slot between processor module and Pro I modules (cover plates accompanied), while Pro II modules fit directly besides the processor module.

16 slots

Pro II-DC with 16 slots

4.2 ADwin-Pro II-DC

The *ADwin-Pro II-DC* enclosure is similar to the standard enclosure *ADwin-Pro II*, but is equipped with a DC power supply.

If a current-limited power supply unit is used, it should be able to supply a multiple of the idle current during power-up to maintain proper performance of the system.

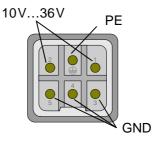


Fig. 3 – Enclosure *ADwin-Pro II-DC*: Detailed view of the pin assignment

16
336mm × 447.5mm × 146mm (incl. feet) 84 HP × 3 U
min. 80W, DC-DC converter 10V35V

Fig. 4 – Enclosure ADwin-Pro II-DC: Specification

At the rear of the enclosure, above the power supply connector you will find a label with the revision number:

Revision	Release	Änderung zur Vorgänger-Version
E1	Jun. 2005	ADwin-Pro II: New enclosure design and new back plane with Pro I and Pro II bus.
		New power supply female connector.

4.3 ADwin-Pro II-BM

In the version "backmounted" of the standard enclosure, the modules are plugged-in at the rear of the enclosure.

Pro II "backmounted" with 15 slots

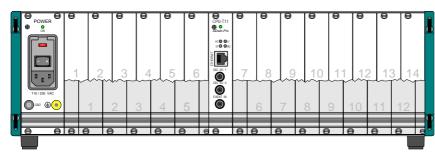


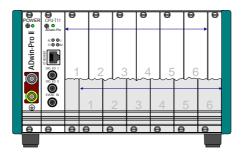
Fig. 5 – Enclosure of ADwin-Pro II-BM (rear panel)

The system fuse is located in a slot in the power supply unit above the female connector for the power supply cable (rear of the enclosure).

Number of Slots	16
Main dimensions (I x w x h) Slot area (w x h)	336mm × 447.5mm × 146mm (incl. feet) 84 HP × 3 U
Power supply unit	min. 70W, 100V240VAC at 50/60Hz switching power supply
Fuse	5A, delayed-action fuse

Fig. 6 - Enclosure of the ADwin-Pro II-BM: Specification

At the rear of the enclosure, above the power supply connector you will find a label with the revision number:


Revision	Release	Previous versions
E1	Jun. 2006	<i>ADwin-Pro II</i> : New enclosure design and new back plane with Pro I and Pro II bus.

ADwin-Pro II-light ADwin-Pro II-light

4.4 ADwin-Pro II-light

Pro II-light with 7 slots

Enclosure ADwin-Pro II-light

The backplane of the enclosure connects the processor module with the other modules.

Number of Slots	7
Main dimensions (I x w x h) Slot area (w x h)	336mm × 234mm × 146mm (incl. feet) 42 HP × 3 U
Power supply unit	min. 40W, 100240VAC at 50/60Hz switching power supply
Fuse	2A, delayed-action fuse

Fig. 7 – Enclosure ADwin-Pro II-light: Specification

At the rear of the enclosure, above the power supply connector you will find a label with the revision number:

Re	evision	Previous versions
	E1	<i>ADwin-Pro II</i> : New enclosure design and new back plane with Pro I and Pro II bus.

4.5 ADwin-Pro II-light-DC

The enclosure *ADwin-Pro II-light-DC* is similar to *ADwin-Pro II-light*, but is equipped with a DC power supply.

If a current-limited power supply unit is used, it should be able to supply a multiple of the idle current during power-up to maintain proper performance of the system.

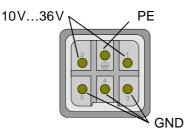


Fig. 8 – Enclosure *ADwin-Pro II-light-DC*: Connector for power supply

Number of Slots	7
Main dimensions (I x w x h) Slot area (w x h)	336mm × 234mm × 146mm (incl. feet) 42 HP × 3 U
Power supply unit	min. 80W, DC-DC converter 10V35V
Fuse	2A, delayed-action fuse

Fig. 9 - Enclosure ADwin-Pro II-light-DC: Specification

At the rear of the enclosure, above the power supply connector you will find a label with the revision number:

Revision	Release	Previous versions
E1	Oct. 2006	First version, ADwin-Pro II only.

The enclosure is delivered with a power supply female connector. The plug may be ordered as follows:

Manufacturer:	Regional-Electronic-Distribution Handelsgesellschaft mbH
	Postfach 1250, 63084 Rodgau

Connectors: Plug enclosure Harting, series HA.3.XX.X, Order no. HA.3.STO.1.11

female connector inset Harting, 5+PE, 400V, 16A, Order no. HE.Q.5.BU.C

4 pcs. female connector contact pin 2.5mm², gold- plated, Order no. HE-HA.C.BU.2,5.AU

Pro II-light-DC mit 7 Steckplätzen

Pro II-mini with 5 slots

4.6 ADwin-Pro II-mini

The smallest *ADwin-Pro II-mini* enclosure has 5 slots and requires an external power supply unit. The power supply connector is located at the rear of the enclosure.

Number of Slots	5
Main dimensions (I x w x h) Slot area (w x h)	253mm × 147.3mm × 146mm (incl. feet) 20 HP × 3 U
External power supply unit	external power supply unit required:
	10V36V DC, >50W

Fig. 10 - Enclosure ADwin-Pro-mini Specification

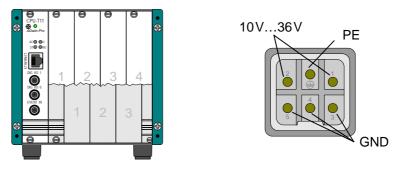


Fig. 11 – Enclosure ADwin-Pro II-mini and power supply connector

At the rear of the enclosure you will find a label with the revision number:

Revision	Release	Previous versions
E1		ADwin-Pro II: New enclosure design and new back plane with Pro I and Pro II bus. Variable input voltage.

ADwin-Pro Modules

5 ADwin-Pro Modules

ADwin

An *ADwin-Pro* module needs one slot (5 HP) in an *ADwin-Pro* system, some modules need 2 slots.

All technical data of the module refer to a device which is powered-up.

For pluggin-in a module into the enclosure please note the description on page 4, especially with *ADwin-Pro II* enclosures.

5.1 Unsupported Pro I modules

Normally all Pro I modules are usable in an ADwin-Pro II system.

Nevertheless, the following modules are not supported in *ADwin-Pro II* systems and can only be used in an *ADwin-Pro I* system:

- Pro-AOut-4/16 Rev. A
- Pro-AOut-8/16 Rev. A
- Pro-AO-16/8-12 Rev. A

5.2 Setting the module's addresses (Pro I modules, too)

Any *ADwin-Pro* module (except CPU modules) is addressed in an *ADbasic* program via its module address. The module address is free selectable.

Selecting a module's address

Note the following rules for selecting a module's address:

- A module address must be unique inside its module group.
 - Each module is member of a module group:
 - Pro I modules, functional group CPU: processor modules.
 - Pro I modules, functional group ADC: analog input modules.
 - Pro I modules, functional group DAC: analog output modules.
 - Pro I modules, functional group DIO: digital input/output modules, relays and counter modules.
 - Pro I modules, functional group EXT: special modules of all kind.
 - All Pro II modules.
- A module address must be within the following limits:
 - Pro I modules: 1 ... 255.
 - Pro II modules: 1 ... 15.

There are special limits for RSxxx- and fieldbus modules (see below)

It is true that you can select the same module address for modules of different groups. Nevertheless we recommend to use unique adresses in order to prevent a mix-up.

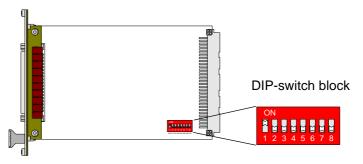
Setting the module's adress: Pro II modules

With Pro II modules you set the module address with the program *ADpro*. Settin the address also resets the Pro modules to initial state.

Switch off the power supply of the *ADwin* system and insert the Pro II modules into the casing; please note the description on page 4. Power up the *ADwin* system again.

Afterwards you start the program *ADpro* from the Windows Start menu under Programs > ADwin. Select the module address with the menu entry Edit > Set module adresses.

Setting the module's adress: Pro I modules



With Pro I modules you set the module address manually via DIP-switches. The on-board block of DIP-switches is located right to the bottom.

Wit 8 DIP switches the address is selectable between 1 and 255 (see fig. 12). Each module of the same group needs to have a different address.

Module no.	Settings of DIP switches							
Module no.	1	2	3	4	5	6	7	8
1	1	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	0
3	1	1	0	0	0	0	0	0
4	0	0	1	0	0	0	0	0
5	1	0	1	0	0	0	0	0
6	0	1	1	0	0	0	0	0
7	1	1	1	0	0	0	0	0
8	0	0	0	1	0	0	0	0
254	0	1	1	1	1	1	1	1
255	1	1	1	1	1	1	1	1

Fig. 12 - Address settings of the ADwin-Pro modules with DIP switches

Please note:

- A RSxxx module with 4 serial interfaces uses 2 addresses (group EXT): the set address and the following address.
- A fieldbus module uses 32 addresses (group EXT); the address allocation is shown in fig. 13.

Set module	Addit. allocated	Settings of DIP switches							
address	addresses	1	2	3	4	5	6	7	8
1	160191	1	0	0	0	0	0	0	0
2	192223	0	1	0	0	0	0	0	0
3	224255	1	1	0	0	0	0	0	0
4	128159	0	0	1	0	0	0	0	0

Fig. 13 – Address settings of fieldbus modules with DIP switches

5.3 Processor modules

For each *ADwin-Pro* system one processor module is required. This processor module is the center of a Pro system and performs the following tasks:

- Communication with PC or laptop.

The data connection is established via USB or Ethernet; former version used a serial link connection.

- Communication with other ADwin-Pro modules via internal Pro bus.
- Communication with possibly existing *TiCo* processors on *Pro II* modules via internal Pro bus.
- Start and run the user defined processes.

The processor module provides the memory for data and programs, divided into a fast internal memory (SRAM) and an external memory (DRAM).

At the time, the prcessor module Pro-CPU-T11 is available for ADwin-Pro II.

5.3.1 Pro-CPU-T11

The processor modul can only be run in a Pro II casing and works both with Pro I and Pro II modules.

The output module Pro-AOut-x runs with T11 up from Rev. B.

To be used for Pro system	Pro II
Processor	ADSP TS101S
Clock rate	300MHz
Calculation resolution for float values	40 Bit
Data connection	Ethernet
Internal memory	768KiB
External memory	256MiB
TTL-signal inputs	Event In, with $4,7k\Omega$ pull-down resistor Dig I/O 0, with $4,7k\Omega$ pull-up resistor Dig I/O 1, with $4,7k\Omega$ pull-up resistor

Fig. 14 – Pro-CPU-T11: Specifikation

The processor module has a fixed position in the casing. Please see the notes on how to Plug-in a module on page 4.

The internal memory of the processor is divided into program memory (PM), data memory (DM) and free-for-use extra memory (EM). Each memory section has a size of 256 KiB.

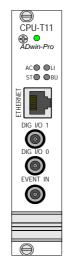


Fig. 15 - Pro-CPU-T11: Front panel

The processor module show the mode of operation by LEDs at the Ethernet connector. The meaning of the LEDs is described in manual ADwin Installation, chapter 10.5.

The external trigger input (Event In) enables the processor module to recognize an external signal as trigger for an event and trigger a process, that is processed immediately and completely (see *ADbasic* manual, chapter: Structure of the *ADbasic* program).

The event signal has to be present for 50ns to be recognized.

Alternatively, the event input of an other module may be used. All event signals arrive at the same signal line of the processor module as the input Event In does.

Input Event In

The digital channels DIG I/O 0 programmed as input or output.	and DIG I/O 1 use TTL signals and can be	Digital Channels DIG I/O
After start-up, the DIG I/O chan	nels are configured as inputs for falling edges.	
The inputs and outputs of the CF <i>ADbasic</i> instructions. The instru and in the Pro II Software manua	Programming in ADbasic	
The include file ADwinPro_All	.inc contains the following instructions:	
Function	Instructions	
Configure digital channels	CPU_Dig_IO_Config	
Query edge at digital input	CPU_Digin	
Set level at digital output	CPU_Digout	
Configure event input	CPU_Event_Config	
 ther used with few, but inevitable The processor T11 needs the included. In parallel all other 	 if still working with Pro I modules – be fur- e changes: include file <adwinpro_all.inc> to be include files for Pro modules should be</adwinpro_all.inc> 	Software changes when switching from T9 / T10
 deleted from the program. The time unit of the PROCESS priority and low priority proce 	SDELAY (cycle time) is $3.\overline{3}$ ns for both high sses.	PROCESSDELAY
	lations must be adapted to the new time ocessdelay corresponds to 7.1 s; a greater sing an auxiliary variable.	
 The time unit of 3.3 ns is also queries with Read_Timer m 	true for the internal counter, i.e. counter ust be adapted, too.	READ_TIMER
become more complex (see b	ing in connection with I/O instructions has below). Thus, a time difference determined fer to a part of the total process timing only.	
 instructions. CPU_SLEEP causes the had the same function P1_SLEEP causes the instructions. 	be replaced by one of the following new e processor to wait. The instruction SLEEP with the processors T9 and T10. Pro I bus to wait, e.g. to co-ordinate I/O Pro II bus to wait, e.g. to co-ordinate I/O	SLEEP
The new instructions have a	time unit of 10ns (SLEEP: 100ns).	
time of an I/O instruction, e.	rmally SLEEP is used to bridge the waiting g. the settling time of a multiplexer with truction P1_SLEEP fits for previous modu- p for Pro II modules.	
Please see the notes in the A (chapter 5.2.5).	Dbasic manual about Using Waiting Times	-
cessor instructions on theon	ns? The processor T11 distinguishes pro- e hand and I/O instructions on the other	
of both instruction groups and	ture enables a quasi-parallel processing ¹ d obtains a much faster processing of <i>AD</i> - rs from T9 and T10 in this point: T9 and T10 processed	

^{1.} The processor architecture differs from T9 and T10 in this point: T9 and T10 processed instructions of both groups sequentially. Thus, halting the processor with a SLEEP instruction did make the waiting time for subsequent I/O instructions, too.

basic processes. This also means that the instruction groups are (mainly) processed independently in respect to timing. Since the process timing shall be controlled by waiting, there needs to be a separate instruction for each group. The separate instruction for each bus is required, because an I/O wait is effected by halting the appropriate bus.

5.3.2 Pro II-Boot

With Pro II-Boot you have a boot loader expansion which can

- boot an ADwin-Pro II system.
- load up to 10 processes.
- start process 10 automatically (if present).
- save data.

Pro II-Boot is an ordering option for processor modules with Ethernet interface. An upgrade is not possible.

By installation of the *ADbasic* and the *ADwin* drivers from the CDROM, all files / programs necessary for the boot loader option have already been copied to the hard disk.

If you use the boot loader, an application, which you have written with a program for visualization of measurement data, must not reboot the *ADwin* system.

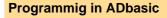
5.3.3 Module monitoring with Watchdog

You can monitor your processor module with a watchdog. The watchdog generates a reset, when a signal, generated by a program code, does unexpectedly not arrive (see also "*ADwin-Pro* System Specifications - Programming in *ADbasic*").

The watchdog reset signal sets the digital and analog outputs at Pro modules to those values, which correspond to the configuration after power-up, normally digital 0 or 0 Volt. Please note that Pro II modules will only react to the watchdog signal if the T11 processor has revision E06 at least.

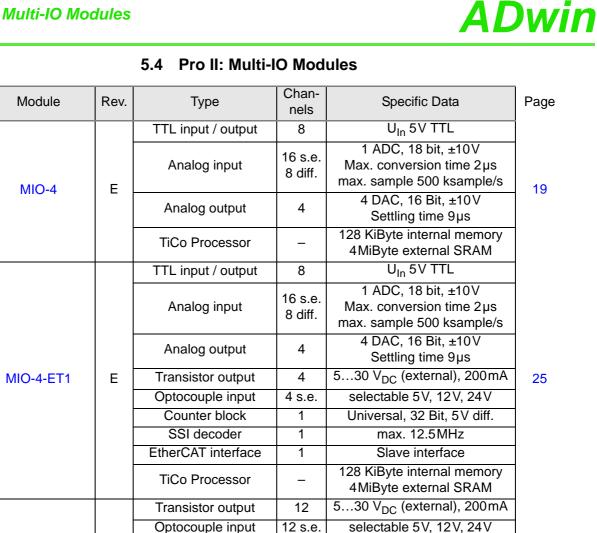
The watchdog is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains the watchdog instructions:


Function	Instructions					
Start and stop the watchdog	StartWatchdog, StopWatchdog					
Reset the watchdog counter	ResetWatchdogTimer					

Notes in relation to Pro II-Flash-Boot:

- Please pay attention to the fact that the watchdog has to be reset every 1.6s, since a longer time interval between two impulses will be interpreted as an error.
- The watchdog can also be used with the boot loader Pro-Flash-Boot, but does not automatically load and start the software.
- Test your programs always with the watchdog switched off. Activate it only when your programs work properly!


Software

MIO-D12

Е

2

1

1

_

Universal, 32 Bit, 5V diff.

max. 12.5MHz

Slave interface 128 KiByte internal memory

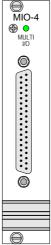
4MiByte external SRAM

38

Counter block

SSI decoder

EtherCAT interface


TiCo Processor

5.4.1 Pro II-MIO-4 Rev. E

The module Pro II-MIO-4 Rev. E is equipped with the following hard-ware:

- 16 analog inputs (16 single-ended or 8 differential), via multiplexer with 18 bit ADC, sample rate up to 500kHz
- 4 analog outputs with 16 Bit DAC.
- 8 digital input / output channels with TTL levels
- 1 Event input
- TiCo processor with 128 KiB internal memory and 4MiB external SRAM memory

If the *TiCo* bootloader is programmed, the module can work on its own and independently from the CPU module of the *ADwin-Pro II* system.

The extended module version Pro II-MIO-4-ET1 Rev. E is described starting on page 25.

ANALOG IN 9 ANALOG IN 10 ANALOG IN 11 ANALOG IN 12 ANALOG IN 12 ANALOG IN 14 ANALOG IN 14 ANALOG IN 14 ANALOG IN 15 ANALOG IN 16 AGND 27 AGND 28 AGND 27 AGND 27 AGND 28 DIG I/O, BIT 4 DIG I/O, BIT 5 2 DIG I/O, BIT 5 2 DIG I/O, BIT 7 2 DIG I/O, BIT 7 2 2 DIG I/O, BIT 7 2 2 DIG I/O, BIT 7 2 2 DIG I/O, BIT 7 2 2 0 GND 2 1 EVENT IN 2 2	 17 16 15 14 13 12 11 10 9 8 7 6 55 4 3 2 	ANALOG IN 1 ANALOG IN 2 ANALOG IN 3 ANALOG IN 4 ANALOG IN 5 ANALOG IN 6 ANALOG IN 6 ANALOG IN 7 ANALOG IN 8 ANALOG OUT 1 ANALOG OUT 1 ANALOG OUT 2 ANALOG OUT 3 ANALOG OUT 4 DIG I/O, BIT 0 DIG I/O, BIT 1 DIG I/O, BIT 2 DIG I/O, BIT 2 DIG I/O, BIT 2 DIG I/O, BIT 3 DGND +5V (OUT, <0.1A) AGND	ANALOG IN 2 (-) ANALOG IN 3 (-) ANALOG IN 4 (-) ANALOG IN 5 (-) ANALOG IN 5 (-) ANALOG IN 7 (-) ANALOG IN 8 (-) AGND AGND DIG I/O, BIT 4 DIG I/O, BIT 5 DIG I/O, BIT 6 DIG I/O, BIT 7 DGND	37 • 36 • 35 • 34 • 33 • 32 • 31 • 30 • 29 •	B ANALOG OUT 4 177 DIG I/O, BIT 0 166 DIG I/O, BIT 1 155 DIG I/O, BIT 2 14 DIG I/O, BIT 3 153 DGND 154 +5V (OUT, <0.1A)
---	---	---	---	--	---

Analog inputs single-ended

Analog outputs differential

Fig. 16 – Pro II-MIO-4 Rev. E: Pin assignment

The module functions are described in the following sections:

- Analog Inputs
- Analog Outputs
- Digital Inputs / Outputs
- TiCo processor
- Technical Specification
- Programming

Analog Inputs

The module Pro II-MIO-4 Rev. E has 16 single ended inputs or 8 differential inputs (selectable by software). After power-up, the module is set to 8 differential inputs.

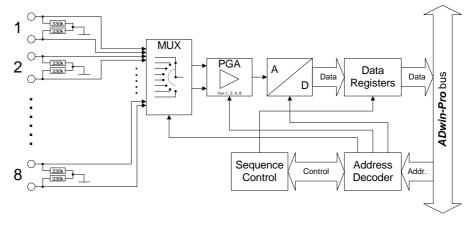
The inputs are equipped with a 37-pin D-Sub female connector; for pin assignment see fig. 16.

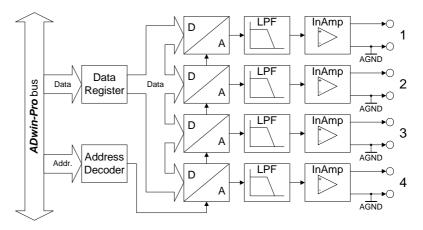
The inputs are connected via a multiplexer to the ADC. The ADC has a resolution of 18 bit and can run with a sampling rate of up to 500kSamples/s.

The module has an input voltage range of $\pm 10V$ and a software selectable gain of 1, 2, 4 or 8. The adjustment of gain and offset is done by software (see chapter 6 "Calibration").

The module includes a sequential control, which can read measurement values from several or all input channels sequentially.

The module can monitor each input channel, if an upper or a lower limit–you can set the limits for each input channel separately–has been exceeded.



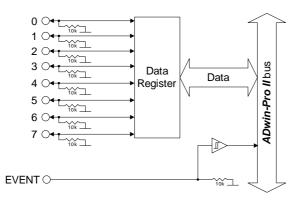

Fig. 17 – Pro II-MIO-4 Rev. E: Block diagram of analog inputs

Analog Outputs

The module Pro II-MIO-4 Rev. E has 4 analog outputs each with a 16 bit DAC. Each output has a fixed 1st order low-pass filters (fc = 10MHz) to suppress noise.

The output voltage range of the DACs is set to $\pm 10V$ bipolar and can't be changed. Offset and gain are adjusted by software (see chapter 6 "Calibration").

The outputs are available on a 37-pin D-Sub female connector; for pin assignment see fig. 16.



Digital Inputs / Outputs

The digital input/output module Pro II-MIO-4 Rev. E provides 8 programmable digital input and output channels with TTL levels. The channels can be configured as blocks of 4 as inputs or outputs by *ADbasic* instructions. The channels are configured as inputs after power up.

Via the trigger input EVENT a signal can trigger a process, which will be processed at once and completely (see *ADbasic* manual).

The digital channels are available on a 37-pin D-Sub female connector; for pin assignment see fig. 16.

TiCo processor

The module provides the freely programmable *TiCo* processor with 64kiB program memory, 64kiB data memory, and 4MiB external SRAM memory. The internal memory serves as data and program memory. You prgram the *TiCo* processor with *TiCoBasic*.

The *TiCo* processor has access to all analog and digital input and output channels, as does the *ADwin* CPU. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

Technical Specification

Analog Inputs	
Input channels	16 single ended / 8 differential. via multiplexer
Resolution	18 Bit
Conversion time	max. 2µs
Sampling rate	max. 500ksps
Multiplexer settling time	5µs
Measurement range	±10V
Gain	1, 2, 4, 8 selectable by software
Accuracy INL	typical ±4 LSB
Accuracy DNL	max. ±1 LSB
Input resistance	330kΩ. ±2%
Input over-voltage	±20V
Offset error	
Offset drift	adjustable ±30ppm/ºC
Analog Outputs	
Output channels	4
Resolution	16 Bit
Settling time	9µs (to 0.01% FSR)
Output voltage	±10V
Output current max.	±5mA per channel for optimal function
Accuracy INL	±2 LSB typical
Accuracy DNL	±1 LSB typical
Offset error	adjustable
Gain error	adjustable
Digital Inputs / Outputs	i
Digital inputs / outputs	8 channel with TTL logic, configurable in groups of 4 channels
Pull down resistor	10kΩ
V _{IH}	min. 2V
V _{IL}	max. 0.8V
I _{IH}	max. 1µA
IL	max. 0.01mA
Voltage range	-0.5V +5.5V
Output current	max. \pm 24mA per channel, max. \pm 50mA per block (4 channels) via V _{CC} or GND
Event input	TTL Logic
Power up status	All channels as inputs
General	
TiCo processor	Processor type: TiCo1 Clock frequency: 50MHz Memory size: 28KiB PM internal, 28KiB DM inter- nal, 4MiByte SRAM external
Connector	37-pin D-Sub female connector
	- Pro II-MIO-4 Rev. E: Specification

Fig. 20 – Pro II-MIO-4 Rev. E: Specification

Programming in ADbasic

Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Analog Inputs Set inputs to single-ended or differential P2_SE_Diff Do a single conversion - com- plete or step by step P2_ADC, P2_ADC24 Plete or step by step P2_Set_Mux, P2_Start_Conv P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24 Read value and start new con- version P2_Read_ADC_SConv24 Use sequence control P2_Seq_Init, P2_Seq_Start P2_Seq_Read_P2_Seq_Read24 P2_Seq_Wait Control input limits P2_ADC_Read_Limit P2_Seq_Wait Output values P2_DAC, P2_DAC4, P2_DAC4_Packed Output values step by step P2_Write_DAC4_Packed P2_Write_DAC4_Packed P2_Write_DAC32 P2_Start_DAC Digital Inputs / Outputs P2_MIO_DigProg Query input signals P2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_Latch Set and read back output sig- P2_MIO_Digout_Long P2_MIO_Digout_Long P2_MIO_Digout_Long P2_MIO_Digout_Long General Use LED P2_Check_LED, P2_Set_LED Synchronize P2_Sync_All, P2_Sync_Enable	Range	Instructions
differential Do a single conversion – com- P2_ADC, P2_ADC24 plete or step by step P2_Set_Mux, P2_Start_Conv P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24 Read value and start new con- P2_Read_ADC_SConv version P2_Read_ADC_SConv24 Use sequence control P2_Seq_Init, P2_Seq_Start P2_SEQ_Read_P2Seq_Read24 P2_SEQ_Read_Packed P2_Seq_Wait Control input limits P2_ADC_Set_Limit Analog Outputs Output values P2_DAC, P2_DAC4, P2_DAC4_Packed Output values step by step P2_Write_DAC, P2_Write_DAC4 P2_Write_DAC32 P2_Start_DAC Digital Inputs / Outputs Configure input/outputs P2_MIO_DigIn_Long Use latch register P2_MIO_Dig_Used_Latch P2_MIO_Dig_Write_Latch Set and read back output sig- P2_Check_LED, P2_Set_LED Values P2_Check_LED, P2_Set_LED	Analog Inputs	
plete or step by stepP2_Set_Mux, P2_Start_Conv P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24Read value and start new conversionP2_Read_ADC_SConv P2_Read_ADC_SConv24Use sequence controlP2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_SEQ_Read_Packed P2_Seq_WaitControl input limitsP2_ADC_Read_Limit P2_ADC_Set_LimitAnalog OutputsP2_DAC, P2_DAC4, P2_DAC4_PackedOutput valuesP2_Write_DAC, P2_Write_DAC4 P2_Write_DAC4_PackedDutput values step by stepP2_Write_DAC4_Packed P2_Write_DAC32 P2_Start_DACDigital Inputs / OutputsP2_MIO_DigProgQuery input signalsP2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Digwrite_LatchSet and read back output sig- nalsP2_MIO_Digout_Long P2_MIO_Digout_LongUse LEDP2_Check_LED, P2_Set_LED		P2_SE_Diff
P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24Read value and start new con- versionP2_Read_ADC_SConv P2_Read_ADC_SConv24Use sequence controlP2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_Seq_Read_Packed P2_Seq_WaitControl input limitsP2_ADC_Read_Limit P2_ADC_Set_LimitAnalog OutputsOutput valuesOutput valuesP2_DAC, P2_DAC4, P2_DAC4_PackedOutput values step by stepP2_Write_DAC4_Packed P2_Write_DAC4 P2_Write_DAC4Digital Inputs / OutputsP2_MIO_DigProgQuery input signalsP2_MIO_DigIn_LongUse latch registerP2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_LatchSet and read back output sig- P2_MIO_Digout_LongP2_MIO_Digout_LongUse LEDP2_Check_LED, P2_Set_LED	0	
P2_Read_ADC, P2_Read_ADC24Read value and start new con- versionP2_Read_ADC_SConv versionVersionP2_Read_ADC_SConv24Use sequence controlP2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_Seq_Read_Packed P2_Seq_WaitControl input limitsP2_ADC_Read_Limit P2_ADC_Set_LimitAnalog OutputsP2_DAC, P2_DAC4, P2_DAC4_PackedOutput valuesP2_DAC, P2_DAC4, P2_Write_DAC4 P2_Write_DAC4_Packed P2_Write_DAC4_Packed P2_Write_DAC4_Packed P2_Start_DACDigital Inputs / OutputsP2_MIO_DigProgQuery input signalsP2_MIO_Dig_Latch P2_MIO_Dig_Latch P2_MIO_Dig_Write_LatchSet and read back output sig- P2_MIO_Digout_LongP2_MIO_Digout_LongGeneralUse LEDP2_Check_LED, P2_Set_LED	piece of step by step	
versionP2_Read_ADC_SConv24Use sequence controlP2_Seq_Init, P2_Seq_StartP2_Seq_Read, P2_Seq_Read24P2_SEQ_Read_PackedP2_Seq_WaitControl input limitsP2_ADC_Read_LimitP2_ADC_Set_LimitAnalog OutputsOutput valuesP2_DAC, P2_DAC4, P2_DAC4_PackedOutput values step by stepP2_Write_DAC4_PackedP2_Write_DAC4_PackedP2_Write_DAC4_PackedP2_Write_DAC4_PackedP2_Start_DACDigital Inputs / OutputsConfigure input/outputsP2_MIO_DigIn_LongUse latch registerP2_MIO_Dig_Read_LatchP2_MIO_Dig_Write_LatchSet and read back output sig- nalsP2_MIO_Digout P2_MIO_Digout_LongUse LEDP2_Check_LED, P2_Set_LED		
Use sequence control P2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_Seq_Read_Packed P2_Seq_Wait Control input limits P2_ADC_Read_Limit P2_ADC_Set_Limit Analog Outputs Output values P2_DAC, P2_DAC4, P2_DAC4_Packed Output values step by step P2_Write_DAC, P2_Write_DAC4 P2_Write_DAC32 P2_Start_DAC Digital Inputs / Outputs P2_MIO_DigProg Query input signals P2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_Latch Set and read back output sig P2_MIO_Digout_Long MIO_Digout_Long P2_MIO_Digout_Long Use LED P2_Check_LED, P2_Set_LED	Read value and start new con-	P2_Read_ADC_SConv
P2_Seq_Read, P2_Seq_Read24 P2_SEQ_Read_Packed P2_Seq_WaitControl input limitsP2_ADC_Read_Limit P2_ADC_Set_LimitAnalog OutputsP2_DAC, P2_DAC4, P2_DAC4_PackedOutput valuesP2_Write_DAC, P2_Write_DAC4 P2_Write_DAC4_Packed P2_Write_DAC32 P2_Start_DACDigital Inputs / OutputsP2_MIO_DigProgQuery input signalsP2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_LatchSet and read back output sigP2_MIO_Digout P2_MIO_Digout_Long P2_MIO_Digout_LongGeneralUse LEDUse LEDP2_Check_LED, P2_Set_LED	version	P2_Read_ADC_SConv24
P2_SEQ_Read_Packed P2_Seq_WaitControl input limitsP2_ADC_Read_Limit P2_ADC_Set_LimitAnalog OutputsOutput valuesOutput valuesP2_DAC, P2_DAC4, P2_DAC4_PackedOutput values step by stepP2_Write_DAC, P2_Write_DAC4 P2_Write_DAC32 P2_Start_DACDigital Inputs / OutputsP2_MIO_DigProgQuery input signalsP2_MIO_Digin_LongUse latch registerP2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_LatchSet and read back output sig- P2_MIO_Digout nalsP2_MIO_Digout_LongGeneralUse LEDUse LEDP2_Check_LED, P2_Set_LED	Use sequence control	
P2_Seq_WaitControl input limitsP2_ADC_Read_Limit P2_ADC_Set_LimitAnalog OutputsOutput valuesP2_DAC, P2_DAC4, P2_DAC4_PackedOutput values step by stepP2_Write_DAC, P2_Write_DAC4 P2_Write_DAC32 P2_Start_DACDigital Inputs / OutputsP2_MIO_DigProgQuery input signalsP2_MIO_Digin_LongUse latch registerP2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_LatchSet and read back output sig- P2_MIO_Digout P2_MIO_Digout_LongGeneralUse LEDUse LEDP2_Check_LED, P2_Set_LED		
Control input limitsP2_ADC_Read_Limit P2_ADC_Set_LimitAnalog OutputsOutput valuesP2_DAC, P2_DAC4, P2_DAC4_PackedOutput values step by stepP2_Write_DAC, P2_Write_DAC4 P2_Write_DAC32 P2_Start_DACDigital Inputs / OutputsP2_MIO_DigProgQuery input signalsP2_MIO_Digin_LongUse latch registerP2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_LatchSet and read back output signalsP2_MIO_Digout P2_MIO_Digout P2_MIO_Digout_LongGeneralUse LEDUse LEDP2_Check_LED, P2_Set_LED		
P2_ADC_Set_LimitAnalog OutputsOutput valuesP2_DAC, P2_DAC4, P2_DAC4_PackedOutput values step by stepP2_Write_DAC, P2_Write_DAC4P2_Write_DAC32P2_Write_DAC32P2_Start_DACP2_MIO_DigProgDigital Inputs / OutputsP2_MIO_Digin_LongQuery input signalsP2_MIO_Dig_LatchP2_MIO_Dig_Read_LatchP2_MIO_Dig_Write_LatchP2_MIO_Dig_Write_LatchP2_MIO_DigoutSet and read back output sig- nalsP2_MIO_Digout_LongGeneralP2_MIO_Digout_LongUse LEDP2_Check_LED, P2_Set_LED		
Analog OutputsOutput valuesP2_DAC, P2_DAC4, P2_DAC4_PackedOutput values step by stepP2_Write_DAC, P2_Write_DAC4P2_Write_DAC4_PackedP2_Write_DAC32P2_Start_DACP2_Start_DACDigital Inputs / OutputsP2_MIO_DigProgQuery input signalsP2_MIO_Digin_LongUse latch registerP2_MIO_Dig_Read_LatchP2_MIO_Dig_Write_LatchP2_MIO_DigoutSet and read back output sig- nalsP2_MIO_Digout_LongGeneralUse LEDP2_Check_LED, P2_Set_LED	Control input limits	
Output valuesP2_DAC, P2_DAC4, P2_DAC4_PackedOutput values step by stepP2_Write_DAC, P2_Write_DAC4P2_Write_DAC4_PackedP2_Write_DAC32P2_Start_DACP2_Start_DACDigital Inputs / OutputsP2_MIO_DigProgQuery input signalsP2_MIO_Digin_LongUse latch registerP2_MIO_Dig_LatchP2_MIO_Dig_Read_LatchP2_MIO_DigWrite_LatchSet and read back output sig- nalsP2_MIO_Digout P2_MIO_Digout_LongGeneralUse LEDUse LEDP2_Check_LED, P2_Set_LED		P2_ADC_Set_Limit
Output values step by stepP2_Write_DAC, P2_Write_DAC4 P2_Write_DAC4_Packed P2_Write_DAC32 P2_Start_DACDigital Inputs / OutputsP2_MIO_DigProgConfigure input/outputsP2_MIO_Digin_LongQuery input signalsP2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_LatchSet and read back output sig- nalsP2_MIO_Digout P2_MIO_Digout_LongGeneralUse LEDUse LEDP2_Check_LED, P2_Set_LED	Analog Outputs	
P2_Write_DAC4_Packed P2_Write_DAC32 P2_Start_DAC Digital Inputs / Outputs Configure input/outputs P2_MIO_DigProg Query input signals P2_MIO_Digin_Long Use latch register P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_Latch P2_MIO_Digout Set and read back output sig- P2_MIO_Digout_Long P2_MIO_Get_Digout_Long P2_MIO_Get_Digout_Long General Use LED P2_Check_LED, P2_Set_LED	Output values	P2_DAC, P2_DAC4, P2_DAC4_Packed
P2_Write_DAC32 P2_Start_DAC Digital Inputs / Outputs Configure input/outputs P2_MIO_DigProg Query input signals P2_MIO_Digin_Long Use latch register P2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_Latch Set and read back output sig- P2_MIO_Digout_Long P2_MIO_Get_Digout_Long P2_MIO_Get_Digout_Long General Use LED P2_Check_LED, P2_Set_LED	Output values step by step	
P2_Start_DACDigital Inputs / OutputsConfigure input/outputsP2_MIO_DigProgQuery input signalsP2_MIO_Digin_LongUse latch registerP2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_LatchSet and read back output sig- nalsP2_MIO_Digout P2_MIO_Digout_Long P2_MIO_Get_Digout_LongGeneralUse LEDP2_Check_LED, P2_Set_LED		
Digital Inputs / Outputs P2_MIO_DigProg Configure input/outputs P2_MIO_DigIn_Long Query input signals P2_MIO_Dig_Latch Use latch register P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_Latch P2_MIO_Digout Set and read back output sig- P2_MIO_Digout nals P2_MIO_Digout_Long P2_MIO_Get_Digout_Long P2_MIO_Get_Leng General P2_Check_LED, P2_Set_LED		
Configure input/outputsP2_MIO_DigProgQuery input signalsP2_MIO_Digin_LongUse latch registerP2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_LatchSet and read back output sig- nalsP2_MIO_Digout P2_MIO_Digout_Long P2_MIO_Get_Digout_LongGeneralUse LEDUse LEDP2_Check_LED, P2_Set_LED	Disite Linearty / Octoorty	P2_Start_DAC
Query input signals P2_MIO_Digin_Long Use latch register P2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_Latch Set and read back output sig- P2_MIO_Digout nals P2_MIO_Digout_Long P2_MIO_Get_Digout_Long P2_MIO_Get_Digout_Long General Use LED P2_Check_LED, P2_Set_LED		
Use latch register P2_MIO_Dig_Latch P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_Latch P2_MIO_Dig_Write_Latch Set and read back output sig- nals P2_MIO_Digout_Long P2_MIO_Get_Digout_Long P2_MIO_Get_Digout_Long P2_MIO_Get_Digout_Long P2_MIO_Get_Digout_Long	Configure input/outputs	P2_MIO_DigProg
P2_MIO_Dig_Read_Latch P2_MIO_Dig_Write_Latch Set and read back output sig- P2_MIO_Digout nals P2_MIO_Digout_Long P2_MIO_Get_Digout_Long General Use LED P2_Check_LED, P2_Set_LED	Query input signals	P2_MIO_Digin_Long
P2_MIO_Dig_Write_Latch Set and read back output sig- P2_MIO_Digout nals P2_MIO_Digout_Long P2_MIO_Get_Digout_Long General Use LED P2_Check_LED, P2_Set_LED	Use latch register	
Set and read back output sig- P2_MIO_Digout nals P2_MIO_Digout_Long P2_MIO_Get_Digout_Long General Use LED P2_Check_LED, P2_Set_LED		
nals P2_MIO_Digout_Long P2_MIO_Get_Digout_Long General Use LED P2_Check_LED, P2_Set_LED		P2_MIO_Dig_Write_Latch
P2_MIO_Get_Digout_Long General Use LED P2_Check_LED, P2_Set_LED		
General Use LED P2_Check_LED, P2_Set_LED	nals	
Use LED P2_Check_LED, P2_Set_LED		P2_MIO_Get_Digout_Long
Synchronize P2_Sync_All, P2_Sync_Enable	Use LED	P2_Check_LED, P2_Set_LED
	Synchronize	P2_Sync_All, P2_Sync_Enable
P2_Sync_Stat		P2_Sync_Stat
Use interrupt and event inputs P2_Event_Enable , P2_Event_Read	Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read
P2_Event_Config		P2_Event_Config

Pro II: Multi-IO Modules Pro II-MIO-4 Rev. E

are described in <i>TiCoBasic</i> onlir	d with <i>TiCoBasic</i> instructions. The instruction ne help.		
The include file MIO_TiCo.inc	The include file MIO_TiCo.inc contains instructions for the functions:		
Range	Instructions		
Analog Inputs			
Set inputs to single-ended or differential	SE_Diff		
Do a single conversion – com- plete or step by step	ADC, ADC24 Set_Mux, Start_Conv, Wait_EOC Read_ADC, Read_ADC24		
Read value and start new con- version	Read_ADC_SConv Read_ADC_SConv24		
Use sequence control	Seq_Init, Seq_Start Seq_Read, Seq_Read24 Seq_Wait		
Control input limits	ADC_Read_Limit ADC_Set_Limit		
Analog Outputs			
Output values	DAC		
Output values step by step	Write_DAC,Write_DAC32 Start_DAC		
Digital Inputs / Outputs			
Configure input/outputs	MIO_DigProg		
Query input signals	MIO_Digin_Long		
Use latch register	MIO_Dig_Latch MIO_Dig_Read_Latch MIO_Dig_Write_Latch		
Set and read back output sig- nals	MIO_Digout MIO_Digout_Long MIO_Get_Digout_Long		
General			
Use LED	Check_LED, Set_LED		
Use interrupt and event inputs	Event_Enable, Event_Eead Event_Config, Trigger_Event		
	RangeAnalog InputsSet inputs to single-ended or differentialDo a single conversion – complete or step by stepRead value and start new conversionUse sequence controlControl input limitsAnalog OutputsOutput valuesOutput values step by stepDigital Inputs / OutputsQuery input signalsUse latch registerSet and read back output signalsUse LED		

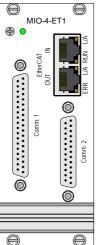
Programming TiCo access To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full

Pro II: Multi-IO Modules Pro II-MIO-4-ET1 Rev. E

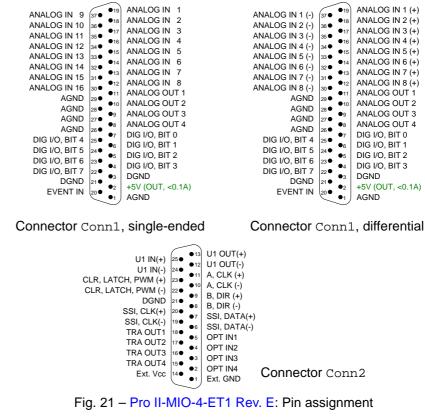
Function	Instructions
Control <i>TiCo</i> processor	P2_TiCo_Reset, P2_TiCo_Start, P2_TiCo_Stop P2_Get_TiCo_Bootloader_ Status P2_Get_TiCo_Status, P2_Workload
Control <i>TiCo</i> processes	P2_Process_Status P2_TiCo_Get_Processdelay P2_TiCo_Set_Processdelay P2_TiCo_Start_Process P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.4.2 Pro II-MIO-4-ET1 Rev. E


The module Pro II-MIO-4-ET1 Rev. E is equipped with the following hardware:

- 16 analog inputs (16 single-ended or 8 differential), via multiplexer with 18 bit ADC, sample rate up to 500kHz
- 4 analog outputs with 16 Bit DAC.
- 8 digital input / output channels with TTL levels
- 1 Event input
- 4 transistor outputs (TRA)
- 4 optically isolated inputs (OPT)
- 1 counter block with two 32-bit counters:
 - one up/down counter with clock/direction or four edge evaluation for connection of encoders.
 - one PWM counter to evaluate high and low times, duty cycle, or frequency.
- 1 SSI decoder to connect an incremental encoder
- 1 Ethercat interface (slave)
- TiCo processor with 128 KiByte internal memory and 4MiB external SRAM memory

The *TiCo* processor has access to all inputs and outputs of the module. For more information about usage and programming of the *TiCo* processor please see the manual *TiCoBasic*.


If the *TiCo* bootloader is programmed, the module can work on its own and independently from the CPU module of the *ADwin-Pro II* system.

The module variant Pro II-MIO-4 Rev. E is described starting on page 19.

Pro II: Multi-IO Modules Pro II-MIO-4-ET1 Rev. E

The module functions are described in the following sections:

- Analog Inputs
- Analog Outputs
- Digital Inputs / Outputs
- Transistor Outputs
- Optocouple Inputs
- SSI Decoder
- Counter block
- EtherCAT Interface
- TiCo processor
- Technical Specification
- Programming

Analog Inputs

The module Pro II-MIO-4-ET1 Rev. E has 16 single ended inputs or 8 differential inputs (selectable by software). After power-up, the module is set to 8 differential inputs.

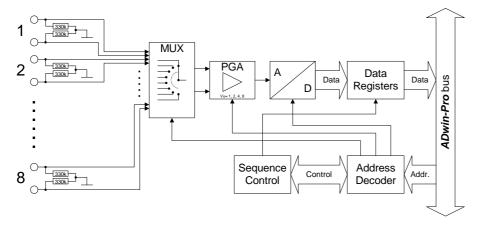
The inputs are equipped with a 37-pin D-Sub female connector; for pin assignment see fig. 16.

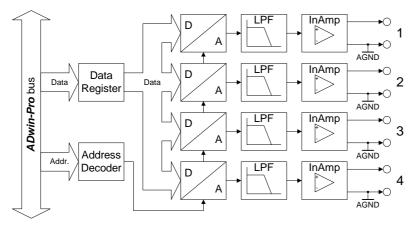
The inputs are connected via a multiplexer to the ADC. The ADC has a resolution of 18 bit and can run with a sampling rate of up to 500kSamples/s.

The module has an input voltage range of $\pm 10V$ and a software selectable gain of 1, 2, 4 or 8. The adjustment of gain and offset is done by software (see chapter 6 "Calibration").

The module includes a sequential control, which can read measurement values from several or all input channels sequentially.

The module can monitor each input channel, if an upper or a lower limit–you can set the limits for each input channel separately–has been exceeded.



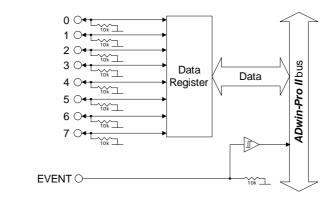

Fig. 22 - Pro II-MIO-4-ET1 Rev. E: Block diagram of analog inputs

Analog Outputs

The module Pro II-MIO-4-ET1 Rev. E has 4 analog outputs each with a 16 bit DAC. Each output has a fixed 1st order low-pass filters (fc = 10MHz) to suppress noise.

The output voltage range of the DACs is set to $\pm 10V$ bipolar and can't be changed. Offset and gain are adjusted by software (see chapter 6 "Calibration").

The outputs are available on a 37-pin D-Sub female connector; for pin assignment see fig. 16.


Digital Inputs / Outputs


The digital input/output module Pro II-MIO-4-ET1 Rev. E provides 8 programmable digital input and output channels with TTL levels. The channels can be configured as blocks of 4 as inputs or outputs by *ADbasic* instructions. The channels are configured as inputs after power up.

Via the trigger input EVENT a signal can trigger a process, which will be processed at once and completely (see *ADbasic* manual).

The digital channels are available on a 37-pin D-Sub female connector; for pin assignment see fig. 16.

Transistor Outputs

The module Pro II-MIO-4-ET1 Rev. E provides 4 channels of galvanically isolated transistor outputs. The outputs switch to $\rm V_{\rm CC}.$

The switching voltage V_{CC} has to be provided by an external power supply.

The channels as well as the event-input are optically isolated from system circuitry.

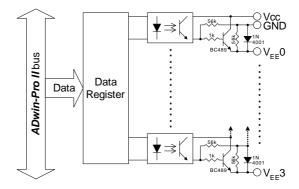
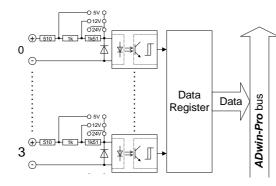


Fig. 25 - Pro II-MIO-4-ET1 Rev. E: Block diagram transistor outputs

The outputs are provided on the 25-pole D-Sub connector Conn2; pin assignment see fig. 21.

Optocouple Inputs


The module Pro II-MIO-4-ET1 Rev. E provides 4 channels of optically isolated digital inputs. The input voltage range can be set by jumpers (5V, 12V, 24V). The default setting of the input voltage range is 24V. The switching time of only 100 ns allows the sampling of high-speed digital inputs.

The module can automatically monitor the edges of input channels. With every change the current input levels are saved together with a time stamp in a FIFO. The FIFO data can be read read and processed.

Each channel is optically isolated from the system circuitry and from the other inputs. The event-input is optically isolated from the system as well.

The inputs are provided on the 25-pole D-Sub connector Conn2; pin assignment see fig. 21.

SSI Decoder

An incremental encoder with SSI interface can be connected to the decoder. The signals are differential and have RS422/485 levels.

You can set the clock rate ($6kHz \dots 12.5MHz$) as well as the data resolution (up to 32 bit) of the decoder via software.

A decoder either reads out an individual value (on request) or continously provides the current value.

The decoder inputs are provided on the 25-pole D-Sub connector $\tt Conn2;$ pin assignment see fig. 21.

Counter block

The module Pro II-MIO-4-ET1 Rev. E provides a configurable multi-purpose counter block. The counter block contains two 32-bit counters: First an up/down counter or four edge evaluation for connection of enceoders. Second, a PWM counter to evaluate high and low times, duty cycle, or frequency. Both counters of a block can be operated in parallel.

The counter inputs run differential.

The up/down counter of a block can be operated in 2 modes:

- Clock / direction (CLK and DIR signals)

A negative edge at the CLK input is the counting impulse for the 32-bit counter. The DIR signal sets the counting direction, TTL high means a count-up, TTL low means a count-down.

You can latch the counter values program-controlled or you can influence the counter by an external CLR/LATCH signal.

Depending on the programming the CLR/LATCH signal has either the effect that the counter values are cleared (CLR) or that the counter values are latched (LATCH). This function will only be effective when it is released by the instructions P2_CNT_CLEAR_ENABLE or P2_CNT_LATCH_ENABLE.

The counter is cleared or latched with a rising adge at input CLR/LATCH. During the latch process the frequency of the measurement can be determined by getting the difference of two read latch values, because this difference defines the number of pulses between the two reading processes.

- Four edge evaluation (A and B signals)

The four edge evaluation changes the signals (which should be 90° phase-shifted) of a connected incremental encoder at the inputs A and B to CLK and DIR signals. For this you have to program the inputs corre-

Up/down counter

spondingly (see "ADwin-Pro System Description, Programming in ADbasic").

Since every edge of the A and B signals generates a count impulse, the resolution is increased by factor 4. If the encoder has a reference signal, it can be used to clear or latch the counter (after release of the CLR or LATCH input). The counter is cleared when the signals A, B and CLR are on logic "1" (software-selectable: clear, when only the CLR signal is on logic "1").

The PWM counter of the counter block analyzes the signals at the PWM inputs. Via software instructions the following data can be read directly:

- frequency and duty cycle
- high and low time _

The counter inputs are provided on the 25-pole D-Sub connector Conn2; pin assignment see fig. 21.

EtherCAT Interface

The module provides a fieldbus node with the functionality of an EtherCAT slave. All settings are done via software.

After power-on you must initialize the fieldbus node in ADbasic. The initialization determines the size of the input and output areas.

There is a range each for data input and data output; each range has a size of 16 Longs or 64 bytes. Please note, that the terms "input" and "output" are used as the fieldbus controller sees them.

The interface has a plug connector of type RJ45 for both data input (IN) and data output (OUT). Each connector has a top LED "Link / Activity" (L/A), which displaysd the operating status of the node in the EtherCAT bus. The two other LEDs display the status of the EtherCAT state machine (RUN) and the occurrence of comunication errors (ERR).

LED	Status	Meaning
Link/ Acti- vity	off	Offline (or no power).
	green	Fieldbus node online, no data exchange.
	green, flickering	Fieldbus node online, with data exchange.
	off	Status INIT: interface being initialized (or no power).
RUN	blinks green	Status PRE-OP: Interface has contact to bus master.
	flashs green once	Status SAFE-OP: Interface can read data from the bus, but not send.
	green	Status OP: Interface is completely ready, inputs and outputs are active.
	red	Status EXCEPTION.
	off	No error (or no power).
ERR	blinks red	Invalid configuration.
	flashs red once	Local error in the interface; EtherCAT status has been changed.
	flashs red twice	Application watchdog timeout.
	red	Critival communication error.

Fig. 27 – Pro II-MIO-4-ET1 Rev. E: Meaning of EtherCAT LEDs

ADwin-Pro II Hardware, manual March 2014

PWM Counter

If both LEDs RUN and ERR turn red, a serious error has occurred in the interface. Please inform the support of Jäger Messtechnik; you find the address on the inner side of the cover page of the manual.

The EtherCAT slave can only be accessed from *TiCoBasic*. You initialize slave using the instruction **MIO_ECAT_Init**. Afterwards, you project the EtherCAT bus with a configuration tool suitable for the bus master, e.g. the program "TwinCAT System Manager" of the Beckhoff company. To do so, you have to copy the description files *.xml of the EtherCAT interface from the directory C:\ADwin\Fieldbus\EtherCAT\ to the directory of the configuration tool.

TiCo processor

The module provides the freely programmable *TiCo* processor with 64kiB program memory, 64kiB data memory, and 4MiB external SRAM memory. The internal memory serves as data and program memory. You program the *TiCo* processor with *TiCoBasic*.

The *TiCo* processor has access to all analog and digital input and output channels, as does the *ADwin* CPU. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

Analog Inputs	
Input channels	16 single ended / 8 differential. via multiplexer
Resolution	18 Bit
Conversion time	max. 2µs
Sampling rate	max. 500ksps
Multiplexer settling time	5µs
Measurement range	±10V
Gain	1, 2, 4, 8 selectable by software
Accuracy INL	typical ±4 LSB
Accuracy DNL	max. ±1 LSB
Input resistance	330kΩ. ±2%
Input over-voltage	±20V
Offset error	adjustable
Offset drift	±30ppm/ºC
Analog Outputs	
Output channels	4
Resolution	16 Bit
Settling time	9µs (to 0.01% FSR)
Output voltage	±10V
Output current max.	±5mA per channel for optimal function
Accuracy INL	±2 LSB typical
Accuracy DNL	±1 LSB typical
Offset error	adjustable

Technical Specification

Fig. 28 - Pro II-MIO-4-ET1 Rev. E: Specification

Gain error	adjustable
Digital Inputs / Outputs	aujustable
	9 channel with TTL legic configurable in groups of
Digital inputs / outputs	8 channel with TTL logic, configurable in groups of 4 channels
Pull down resistor	10kΩ
V _{IH}	min. 2V
V _{IL}	max. 0.8V
I _{IH}	max. 1µA
IL	max. 0.01mA
Voltage range	-0.5V +5.5V
Output current	max. ± 24 mA per channel, max. ± 50 mA per block (4 channels) via V _{CC} or GND
Event input	TTL Logic
Power up status	All channels as inputs
Transistor Outputs	
Output channels	4
Switching voltage V _{CC}	530V DC durch externe Spannungsversorgung
Switching current	200mA max. per channel
Voltage drop	0.5V
Switching time	2.5µs
Isolation	42V channel-channel / channel-GND common ground for all OPT and TRA channels
Optocouple Inputs	
Input channels	4
Input current	typ. 3.5mA / max. 7.5mA
Input voltage range (selectable via jumpers)	05V/012V/024V
Switching threshold for 0-low	00.8V / 01.6V / 03.2V
Switching threshold for 1-high	4.55V / 1012V / 2024V
Input over-voltage	-5V 8V / -5V 16V / -5V 30V /
Switching time	100ns
Isolation	42V channel-channel / channel-GND common ground for all OPT and TRA channels
Counter	
Number	1 universal counter block
Counter resolution	32 bit
Reference clock	50MHz
Clock frequency four edge evaluation	12.5MHz max. (at 90° phase-shift of the signals)
Clock frequency up/down counter	15MHz max.
Reference frequency PWM analysis	100MHz

Fig. 28 – Pro II-MIO-4-ET1 Rev. E: Specification

Input / output level compatible to RS422/485 (5V differenti		
	bus termiinating resistor)	
Isolation	none	
SSI Decoder		
Number	1	
Clock frequency SSI deccoder (CLK)	6kHz 12.5MHz	
Ethercat Interface		
Number	1, to be programmed in <i>TiCoBasic</i>	
General		
TiCo processor	Processor type: TiCo1 Clock frequency: 50MHz Memory size: 28KiB PM internal, 28KiB DM inter- nal, 4MiByte SRAM external	
Connectors	37-pin D-Sub female connector Conn1 37-pin D-Sub female connector Conn2 2 female connectors type RJ45 for EtherCAT data input (IN) and output (OUT)	

Fig. 28 – Pro II-MIO-4-ET1 Rev. E: Specification

Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

Programming in ADbasic

The include file ADwinPro_All.inc	contains instructions for the following
functions:	

Range	Instructions
Analog Inputs	
Set inputs to single-ended or differential	P2_SE_Diff
Do a single conversion – com- plete or step by step	P2_ADC, P2_ADC24 P2_Set_Mux, P2_Start_Conv P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24
Read value and start new con- version	P2_Read_ADC_SConv P2_Read_ADC_SConv24
Use sequence control	P2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_SEQ_Read_Packed P2_Seq_Wait
Control input limits	P2_ADC_Read_Limit P2_ADC_Set_Limit
Analog Outputs	
Output values	P2_DAC, P2_DAC4, P2_DAC4_Packed
Output values step by step	P2_Write_DAC, P2_Write_DAC4 P2_Write_DAC4_Packed P2_Write_DAC32 P2_Start_DAC
Digital Inputs / Outputs	
Configure input/outputs	P2_MIO_DigProg

Range	Instructions	
Query input signals	P2_MIO_Digin_Long	
Use latch register	P2 MIO Dig Latch	
Use later register	P2_MIO_DIg_Haten P2_MIO_Dig_Read_Latch	
	P2_MIO_Dig_Write_Latch	
Set and read back output sig-		
nals	P2_MIO_Digout_Long	
	P2_MIO_Get_Digout_Long	
Transistor Outputs		
Set and reset output signals	P2_Digout, P2_Digout_Long	
	P2_Digout_Bits	
	P2_Get_Digout_Long	
Use latch register	P2_Dig_Latch, P2_Sync_All	
	P2_Dig_Write_Latch	
Optocouple Inputs		
Query input signals	P2_Digin_Edge	
	P2_Digin_Long	
Use latch register	P2_Dig_Latch, P2_Sync_All	
	P2_Dig_Read_Latch	
Control edges at input chan-	P2_Digin_FIF0_Enable	
nels	P2_Digin_FIFO_Read	
	P2_Digin_FIF0_Read_Timer	
	P2_Digin_FIFO_Clear P2_Digin_FIFO_Full	
Counter Block	PZ_DIGIII_FIFO_FUII	
Counter Block		
Configure counter	P2_Cnt_Enable, P2_Cnt_Mode	
Use counter	P2_Cnt_Clear, P2_Cnt_Get_Status	
	P2_Cnt_Latch P2_Cnt_Read, P2_Cnt_Read4	
	P2_Cnt_Read_Latch	
	P2_Cnt_Read_Latch4	
Use PWM counter	P2 Cnt PW Enable, P2 Cnt PW Latch	
	P2_Cnt_Get_PW, P2_Cnt_Get_PW_HL	
SSI Decoder		
Use SSI decoder	P2_SSI_Mode, P2_SSI_Set_Bits	
	P2_SSI_Set_Clock	
	P2_SSI_Set_Delay, P2_SSI_Read	
	P2_SSI_Read2	
	P2_SSI_Start, P2_SSI_Status	
EtherCat Interface		
Use interface	only possible in <i>TiCoBasic</i>	
General		
Use LED	P2_Check_LED, P2_Set_LED	
Synchronize	P2_Sync_All, P2_Sync_Enable	
	P2_Sync_Stat	
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read	
	P2_Event_Config	

Programming in TiCoBasic

The module can be programmed with *TiCoBasic* instructions. The instructions are described in *TiCoBasic* online help.

The include file MIO_TiCo.inc contains instructions for the functions:

Range Instructions Analog Inputs Set inputs to single-ended or differential SE_Diff Do a single conversion – com- ADC, ADC24 Set_Mux, Start_Conv, Wait_EOC Read_ADC, Read_ADC24 Read value and start new con- Read_ADC_SConv Read_ADC_SConv24 Use sequence control Seq_Init, Seq_Start Seq_Read, Seq_Read24 Seq_Wait Control input limits ADC_Read_Limit ADC_Set_Limit ADC_Set_Limit Analog Outputs DAC Output values top by step Write_DAC, Write_DAC32 Start_DAC Digital Inputs / Outputs Configure input/outputs MIO_DigProg Query input signals MIO_Dig_Latch MIO_Dig_write_Latch MIO_Digout_Long MIO_Digout_Long MIO_Get_Digout_Long MIO_Dig_Latch MIO_Get_Digout_Long MIO_Dig_Latch MIO_Dig_Latch MIO_Digout_Long MIO_Dig_Latch MIO_Digout_Long MIO_Digout_Long Use latch register MIO_Digout_Long MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Write_Latch MIO_Dig_Latch MIO_Di	
Set inputs to single-ended or differentialSE_DiffDo a single conversion - com- plete or step by stepADC, ADC24 Set_Mux, Start_Conv, Wait_EOC Read_ADC, Read_ADC24Read value and start new con- versionRead_ADC_SConv Read_ADC_SConv24Use sequence controlSeq_Init, Seq_Start Seq_Read, Seq_Read24 Seq_WaitControl input limitsADC_Read_Limit ADC_Set_LimitAnalog OutputsDACOutput values step by stepWrite_DAC, Write_DAC32 Start_DACDigital Inputs / OutputsMIO_Digin_LongQuery input signalsMIO_Dig_Latch MIO_Dig_Write_LatchSet and read back output signalsMIO_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Digout_Long MIO_Get_Digout_LongUse latch registerMIO_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Digout_Long MIO_Get_Digout_LongUse latch registerMIO_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Digout_Long MIO_Dig_Latch MIO_Dig_Latch <td></td>	
differential Do a single conversion – com- ADC, ADC24 plete or step by step Set_Mux, Start_Conv, Wait_EOC Read_ADC, Read_ADC24 Read value and start new con- version Read_ADC_SConv Read_ADC_SConv24 Use sequence control Seq_Init, Seq_Start Seq_Read, Seq_Read24 Seq_Wait Control input limits ADC_Read_Limit ADC_Set_Limit Analog Outputs Output values DAC Output values DAC Output values tep by step Vrite_DAC, Write_DAC32 Start_DAC Digital Inputs / Outputs Configure input/outputs MIO_DigIn_Long Use latch register MIO_Dig_Latch MIO_DigOut_Long MIO_Digout_Long MIO_DigOut_Long MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Latch MIO_DigOut_Long MIO_Get_Digout_Long MIO_Get_Digout_Long MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs	
plete or step by stepSet_Mux, Start_Conv, Wait_EOC Read_ADC, Read_ADC24Read value and start new conversionRead_ADC_SConv Read_ADC_SConv24Use sequence controlSeq_Init, Seq_Start Seq_Read, Seq_Read24 Seq_WaitControl input limitsADC_Read_Limit ADC_Set_LimitAnalog OutputsDACOutput valuesDACOutput values step by stepWrite_DAC, Write_DAC32 Start_DACDigital Inputs / OutputsMIO_DigIn_LongQuery input signalsMIO_Digin_LongUse latch registerMIO_Dig_write_Latch MIO_Digout_LongSet and read back output signalsMIO_Digout MIO_Digout_LongTransistor OutputsMIO_Digout, MIO_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Dig_Latch MIO_Dig_Uatch MIO_Digout_LongVise latch registerMIO_Digout MIO_Digout_LongMIO_Digout_LongMIO_Digout_LongDigutsMIO_Digout_LongMIO_Digout_LongMIO_Digout_LongMIO_Dig_Latch MIO_Dig_Uatch MIO_Get_Digout_LongMIO_Dig_Write_LatchMIO_Dig_Write_LatchOutputsMIO_Dig_Uatch MIO_Digout_LongMIO_Dig_Write_LatchMIO_Dig_Write_LatchOutputsMIO_Dig_Write_LatchOutputsMIO_Dig_Write_Latch	
Read_ADC, Read_ADC24Read value and start new conversionRead_ADC_SConvVersionRead_ADC_SConv24Use sequence controlSeq_Init, Seq_Start Seq_Read, Seq_Read24 Seq_WaitControl input limitsADC_Read_Limit ADC_Set_LimitAnalog OutputsDACOutput valuesDACOutput values step by stepWrite_DAC, Write_DAC32 Start_DACDigital Inputs / OutputsMIO_Digin_LongQuery input signalsMIO_Digin_LongUse latch registerMIO_Dig_Read_Latch MIO_Dig_Write_LatchSet and read back output signalsMIO_Digout_Long MIO_Get_Digout_LongTransistor OutputsMIO_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Dig_Latch MIO_Dig_Write_LatchSet and reset output signalsMIO_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long MIO_Dig_Write_LatchSet and reset output signalsMIO_Dig_Uvrite_Latch MIO_Dig_Write_LatchSet and reset output signalsMIO_Dig_Uvrite_LatchOutputsMIO_Dig_Uvrite_LatchOutputsMIO_Dig_Uvrite_LatchOutputsMIO_Dig_Uvrite_LatchOutputsMIO_Dig_Uvrite_LatchOutputsMIO_Dig_Write_Latch	
Read value and start new con-version Read_ADC_SConv Version Read_ADC_SConv24 Use sequence control Seq_Read, Seq_Read24 Seq_Wait Seq_Wait Control input limits ADC_Read_Limit ADC_Set_Limit ADC_Set_Limit Analog Outputs DAC Output values DAC Output values step by step Write_DAC, Write_DAC32 Start_DAC Start_DAC Digital Inputs / Outputs MIO_DigProg Query input signals MIO_DigIn_Long Use latch register MIO_Dig_Read_Latch MIO_Dig_Write_Latch MIO_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long Use latch register MIO_Dig_Latch MIO_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long MIO_Dig_Write_Latch MIO_Dig_Write_Latch Set and reset output signals MIO_Dig_Latch MIO_Dig_Write_Latch MIO_Dig_Write_Latch Set and reset output signals MIO_Dig_Urite_Latch MIO_Dig_Write_Latch MIO_Dig_Write_Latch <	
versionRead_ADC_SConv24Use sequence controlSeq_Init, Seq_Start Seq_Read, Seq_Read24 Seq_WaitControl input limitsADC_Read_Limit ADC_Set_LimitAnalog OutputsDACOutput valuesDACOutput values step by stepWrite_DAC, Write_DAC32 Start_DACDigital Inputs / OutputsMIO_DigProgQuery input signalsMIO_DigIn_LongUse latch registerMIO_Dig_Latch MIO_Dig_Write_LatchSet and read back output signalsMIO_Digout_Long MIO_Digout_LongTransistor OutputsMIO_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Digout_Long MIO_Dig_Latch MIO_Dig_Write_LatchSet and reset output signalsMIO_Digout_Long MIO_Digout_Long MIO_Get_Digout_LongUse latch registerMIO_Digout_Long MIO_Dig_Write_LatchSet and reset output signalsMIO_Digout_Long MIO_Digout_LongUse latch registerMIO_Digout_Long MIO_Dig.Latch MIO_Dig_Write_LatchOptocouple InputsMIO_Dig_Write_Latch	
Seq_Read, Seq_Read24 Seq_WaitControl input limitsADC_Read_Limit ADC_Set_LimitAnalog OutputsDACOutput valuesDACOutput values step by stepWrite_DAC, Write_DAC32 Start_DACDigital Inputs / OutputsMIO_DigProgQuery input signalsMIO_Digin_LongUse latch registerMIO_Dig_Latch MIO_Dig_Write_LatchSet and read back output signalsMIO_Digout MIO_Digout_LongTransistor OutputsMIO_Digout_LongSet and reset output signalsMIO_Digout_Long MIO_Digout_LongUse latch registerMIO_Digout MIO_Digout_LongOutputsMIO_Digut_Long MIO_Digout_LongMIO_DigutMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Digut_LongMIO_Dig_Latch MIO_Dig_Write_LatchMIO_Dig_Write_LatchOptocouple InputsMIO_Dig_Write_Latch	
Seq_WaitControl input limitsADC_Read_Limit ADC_Set_LimitAnalog OutputsDACOutput valuesDACOutput values step by stepWrite_DAC, Write_DAC32 Start_DACDigital Inputs / OutputsMIO_DigProgQuery input signalsMIO_Digin_LongUse latch registerMIO_Dig_Latch MIO_Dig_Write_LatchSet and read back output signalsMIO_Digout MIO_Digout_LongTransistor OutputsMIO_Digout_LongSet and reset output signalsMIO_Digout_LongUse latch registerMIO_Digout_Long MIO_Digout_LongJoingtor OutputsMIO_Digout_LongMIO_DigutsMIO_Digout_LongMIO_DigutsMIO_Digout_LongMIO_DigutsMIO_Digout_LongMIO_DigutsMIO_Digut_LongMIO_DigutsMIO_Digut_LongMIO_DigutsMIO_Digut_LongMIO_DigutsMIO_Digut_LongMIO_DigutsMIO_Digut_LongMIO_Dig_Latch MIO_DigWrite_LatchMIO_Dig_Write_LatchOptocouple InputsMIO_Dig_Write_Latch	
Control input limitsADC_Read_Limit ADC_Set_LimitAnalog OutputsOutput valuesDACOutput values step by stepWrite_DAC, Write_DAC32 Start_DACDigital Inputs / OutputsMIO_DigProgQuery input signalsMIO_Digin_LongUse latch registerMIO_Dig_Read_Latch MIO_Dig_Write_LatchSet and read back output signalsMIO_Digout MIO_Digout_Long MIO_Get_Digout_LongTransistor OutputsMIO_Digout_Long MIO_Get_Digout_LongUse latch registerMIO_Digout MIO_Digut_Long MIO_Digut_LongDigital nputsMIO_Digout_Long MIO_Digout_LongMIO_Digout_Long MIO_Get_Digout_LongMIO_Digut_Long MIO_Digut_LongUse latch registerMIO_Digut_Long MIO_Digut_LongMIO_Digut_Long MIO_Get_Digout_LongMIO_Digut_Long MIO_Get_Digout_LongUse latch registerMIO_Dig_Write_LatchOptocouple InputsMIO_Dig_Write_Latch	
ADC_Set_LimitAnalog OutputsOutput valuesDACOutput values step by stepWrite_DAC, Write_DAC32 Start_DACDigital Inputs / OutputsMIO_DigProgQuery input signalsMIO_Digin_LongUse latch registerMIO_Dig_Latch MIO_Dig_Write_Latch MIO_DigOut_Long MIO_Digout_LongSet and read back output signalsMIO_Digout_Long MIO_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Digout_Long MIO_Digout_Long MIO_DigUt_LongSet and reset output signalsMIO_Digout_Long MIO_Digout_LongSet and reset output signalsMIO_Digut_Long MIO_Digut_LongUse latch registerMIO_Digut_MIO_Digout_Long MIO_DigUt_LongUse latch registerMIO_DigUt_Long MIO_DigUt_LongUse latch registerMIO_Dig_Latch MIO_Dig_Write_LatchOptocouple InputsStarch MIO_DigWrite_Latch	
Analog Outputs Output values DAC Output values step by step Write_DAC, Write_DAC32 Start_DAC Digital Inputs / Outputs MIO_DigProg Query input signals MIO_Digin_Long Use latch register MIO_Dig_Read_Latch MIO_Dig_Write_Latch Set and read back output signals MIO_Digout_Long MIO_Get_Digout_Long Transistor Outputs MIO_Digout_Long MIO_Get_Digout_Long Set and reset output signals MIO_Digout_Long MIO_Digut_Long Use latch register MIO_Digout_Long MIO_Digout_Long Outputs MIO_Digut_Long MIO_Digout_Long Optocouple Inputs MIO_Dig_Latch MIO_Dig_Write_Latch	
Output values DAC Output values step by step Write_DAC, Write_DAC32 Start_DAC Digital Inputs / Outputs MIO_DigProg Configure input/outputs MIO_Digin_Long Query input signals MIO_Dig_Latch MIO_Dig_Write_Latch Set and read back output sig- nals MIO_Digout MIO_Digout_Long MIO_Get_Digout_Long Transistor Outputs MIO_Digout_Long MIO_Get_Digout_Long Use latch register MIO_Digout_Long MIO_Digout_Long Output values MIO_Digout_Long MIO_Digout_Long MIO_Dig_Write_Latch MIO_Digout_Long MIO_Digout_Long Optocouple Inputs MIO_Dig_Latch MIO_Dig_Write_Latch	
Output values step by stepWrite_DAC, Write_DAC32 Start_DACDigital Inputs / OutputsMIO_DigProgConfigure input/outputsMIO_Digin_LongQuery input signalsMIO_Digin_LongUse latch registerMIO_Dig_Latch MIO_Dig_Write_LatchSet and read back output sig- nalsMIO_Digout MIO_Digout_LongTransistor OutputsMIO_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Digout_Long MIO_Get_Digout_LongUse latch registerMIO_Digout_Long MIO_Get_Digout_LongOptocouple InputsMIO_Dig_Write_Latch	
Start_DACDigital Inputs / OutputsConfigure input/outputsMIO_DigProgQuery input signalsMIO_Digin_LongUse latch registerMIO_Dig_Latch MIO_Dig_Read_Latch MIO_Dig_Write_LatchSet and read back output sig- nalsMIO_Digout MIO_Get_Digout_Long MIO_Get_Digout_LongTransistor OutputsSet and reset output signalsMIO_Digout_Long MIO_Get_Digout_LongUse latch registerMIO_Digout_Long MIO_Get_Digout_LongUse latch registerMIO_Dig_Latch MIO_Dig_Write_LatchOptocouple InputsVio_Dig_Write_Latch	
Digital Inputs / OutputsConfigure input/outputsMIO_DigProgQuery input signalsMIO_Digin_LongUse latch registerMIO_Dig_Latch MIO_Dig_Read_Latch MIO_DigWrite_LatchSet and read back output sig- nalsMIO_Digout MIO_Digout_Long MIO_Get_Digout_LongTransistor OutputsMIO_Digout_Long MIO_Get_Digout_LongSet and reset output signalsMIO_Digout_Long MIO_Get_Digout_LongUse latch registerMIO_Dig_Urite_Latch MIO_Dig_Write_LatchOptocouple InputsVio_Dig_Write_Latch	
Configure input/outputs MIO_DigProg Query input signals MIO_Digin_Long Use latch register MIO_Dig_Latch MIO_Dig_Read_Latch MIO_Dig_Write_Latch Set and read back output sig- MIO_Digout nals MIO_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long Item to the set output signals MIO_Digout_Long Use latch register MIO_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long MIO_Dig_Write_Latch MIO_Dig_Write_Latch	
Query input signals MIO_Digin_Long Use latch register MIO_Dig_Latch MIO_Dig_Read_Latch MIO_DigWrite_Latch Set and read back output sig- MIO_Digout nals MIO_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long Junc_Get_Digout_Long MIO_Digut_Long MIO_Digout_Long MIO_Digout_Long Junc_Get_Digout_Long MIO_Digut_Long MIO_Dig_Ut_Long MIO_Digut_Long MIO_Digout_Long MIO_Digut_Long MIO_Digout_Long MIO_Digut_Long MIO_Digut_Long MIO_Digut_Long MIO_Digut_Long MIO_Digut_Long MIO_Digut_Long MIO_Digut_Long MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs MIO_Dig_Write_Latch	
Use latch register MIO_Dig_Latch MIO_Dig_Read_Latch MIO_Dig_Write_Latch Set and read back output sig- MIO_Digout nals MIO_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long Set and reset output signals MIO_Digout_Long MIO_Get_Digout_Long MIO_Get_Digout_Long Use latch register MIO_Dig_Latch MIO_Dig_Write_Latch MIO_Dig_Write_Latch	
MIO_Dig_Read_Latch MIO_Dig_Write_Latch Set and read back output sig- nals MIO_Digout MIO_Digout_Long MIO_Get_Digout_Long Transistor Outputs MIO_Digout_Long MIO_Get_Digout_Long Set and reset output signals MIO_Digout, MIO_Digout_Long MIO_Get_Digout_Long Use latch register MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs Value	
MIO_Dig_Write_Latch Set and read back output sig- nals MIO_Digout MIO_Digout_Long MIO_Get_Digout_Long Transistor Outputs Set and reset output signals MIO_Digout, MIO_Digout_Long MIO_Get_Digout_Long Use latch register MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs MIO_Dig_Write_Latch	
Set and read back output sig- nals MIO_Digout MIO_Digout_Long MIO_Get_Digout_Long Transistor Outputs MIO_Digout, MIO_Digout_Long MIO_Get_Digout_Long Set and reset output signals MIO_Digout, MIO_Digout_Long MIO_Get_Digout_Long Use latch register MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs Vertex	
nals MIO_Digout_Long MIO_Get_Digout_Long Transistor Outputs Set and reset output signals MIO_Digout, MIO_Digout_Long MIO_Get_Digout_Long Use latch register MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs	
MIO_Get_Digout_Long Transistor Outputs Set and reset output signals MIO_Digout, MIO_Digout_Long MIO_Get_Digout_Long Use latch register MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs Vertice_Latch	
Transistor Outputs Set and reset output signals MIO_Digout, MIO_Digout_Long MIO_Get_Digout_Long MIO_Dig_Latch Use latch register MIO_Dig_Write_Latch Optocouple Inputs Vertice_Latch	
Set and reset output signals MIO_Digout, MIO_Digout_Long MIO_Get_Digout_Long Use latch register MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs	
MIO_Get_Digout_Long Use latch register MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs	
Use latch register MIO_Dig_Latch MIO_Dig_Write_Latch Optocouple Inputs	
MIO_Dig_Write_Latch Optocouple Inputs	
Optocouple Inputs	
Query input signals MIO_Digin_Long	
Use latch register MIO_Dig_Latch	
MIO_Dig_Read_Latch	<u> </u>
Counter Block	
Configure counter Cnt_Enable, Cnt_Mode	
Use counter Cnt_Clear, Cnt_Get_Status	
Cnt_Latch, Cnt_Read	
Cnt_Read_Int_Register Cnt_Sync_Latch, Cnt_Read_Latch	
Use PWM counter Cnt_PW_Enable, Cnt_PW_Latch	
Cnt_FW_Enable, Cnt_FW_Latch Cnt_Get_FW_HL	
SSI Decoder	
Use SSI decoder SSI_Mode, SSI_Set_Bits SSI_Set_Clock	
SSI_Set_Clock SSI_Set_Delay, SSI_Read	
SSI_Start, SSI_Status	
EtherCat Interface	

Instructions
MIO_ECAT_Init
MIO_ECAT_Get_Driver_Version
MIO_ECAT_Check_State_Transition
MIO_ECAT_Read_Data_16L
MIO_ECAT_Write_Data_16L
Check_LED, Set_LED
Event_Enable, Event_Read Event_Config, Trigger_Event

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Programming TiCo access

Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full
Control TiCo processor	P2_TiCo_Reset, P2_TiCo_Start,
	P2_TiCo_Stop
	P2_Get_TiCo_Bootloader_
	Status
	P2_Get_TiCo_Status, P2_Workload
Control TiCo processes	P2_Process_Status
	P2_TiCo_Get_Processdelay
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start_Process
	P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.4.3 Pro II-MIO-D12 Rev. E

The module Pro II-MIO-D12 Rev. E is equipped with the following hardware:

- 12 transistor outputs (TRA)
- 12 optically isolated inputs (OPT)
- 1 Event input (see OPT inputs)
- 2 counter blocks with two 32-bit counters:
 - one up/down counter with clock/direction or four edge evaluation for connection of encoders.
 - one PWM counter to evaluate high and low times, duty cycle, or frequency.
- 1 SSI decoder to connect an incremental encoder
- TiCo processor with 56 KiByte internal memory

If the *TiCo* bootloader is programmed, the module can work on its own and independently from the CPU module of the *ADwin-Pro II* system.

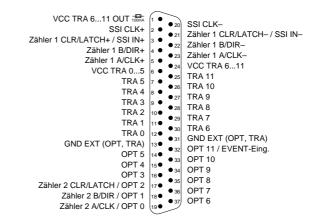


Fig. 29 - Pro II-MIO-D12 Rev. E: Pin assignment

Some pins have double functionality; all connected functions can be used at the same time, even though it may not be useful.

The module functions are described in the following sections:

- Transistor Outputs (TRA)
- Optocouple Inputs (OPT)
- SSI decoder
- Counter block
- TiCo processor
- Technical Specification
- Programmierung with ADbasic and TiCoBasic

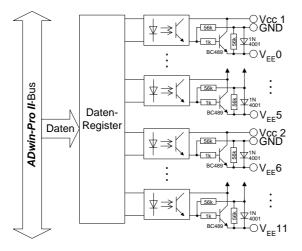
Transistor Outputs

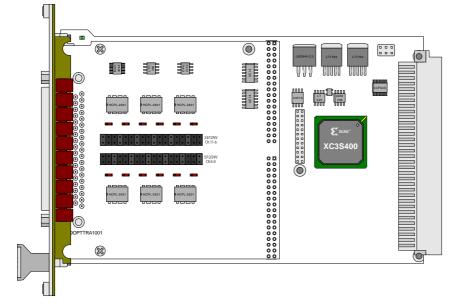
The module Pro II-MIO-D12 Rev. E provides 12 channels of galvanically isolated transistor outputs. The outputs switch to V_{CC} . All TRA and OPT channels use a common GND channel.

The switching voltage V_{CC} has to be provided by an external power supply. You can supply 2 voltages one for every 6 switching outputs (TRA 0 ... TRA 5 und TRA 6 ... TRA 11).

The channels as well as the event-input are optically isolated from system circuitry.

The switching voltage of the outputs TRA 6 \dots TRA 11 is also present on the pin VCC TRA 6...11 OUT to supply external devices. This output is protected with a 100mA fuse.




Fig. 30 - Pro II-MIO-D12 Rev. E: Block diagram trransistor outputs

The module may output levels at defined points in time to TRA outputs as stand-alone. A FIFO serves as buffer where the user-defined level patterns and points in time are stored, maximum 511 Wertepaare. The output time can be defined with an accuracy of 5ns.

The FIFO can be used either for edge detection on the OPT inputs or for level output on TRA outputs.

Optocouple Inputs

The module Pro II-MIO-D12 Rev. E provides 12 channels of optically isolated digital inputs. The input voltage range can be set by jumpers (5V, 12V, 24V). The switching time of only 100ns allows the sampling of high-speed digital inputs.

The module can automatically monitor the edges of input channels. With every change the current input levels are saved together with a time stamp in a FIFO. The FIFO data can be read read and processed.

The FIFO can be used either for edge detection on the OPT inputs or for level output on TRA outputs.

Each channel is optically isolated from the system circuitry and from the other inputs. All TRA and OPT channels use a common GND channel.

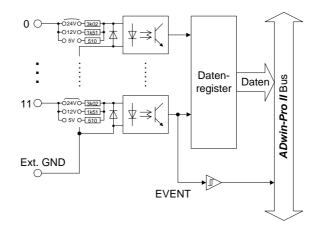


Fig. 31 – Pro II-MIO-D12 Rev. E: Block diagram optocouple inputs

The inputs are provided on the 25-pole D-Sub connector Conn2; pin assignment see fig. 21.

The optically isolated input OPT 11 can also be used as event input. If the event input is enabled a trigger signal at the event input starts the externally triggered *ADbasic* process.

The inputs OPT 0...OPT 2 can also be used as inputs of counter 2. Is is technically permissable, to use both functions (optical input and timer) at the same time.

SSI decoder

An incremental encoder with SSI interface can be connected to the decoder. The signals are differential and have RS422/485 levels.

You can set the clock rate (6kHz ... 12.5MHz) as well as the data resolution (up to 32 bit) of the decoder via software.

Pin assignment of the decoder inputs see fig. 29. The input SSIIN+/- can also be used as CLR/LATCH input of counter 1. Is is technically permissable, to use both functions (SSI decoder and timer) at the same time.

A decoder either reads out an individual value (on request) or continously provides the current value.

The SSI decoder can be set via software:

- clock rate can bes set to 6,1kHz...12,5MHz with <u>SSI_Set_Clock</u>.
- Resolution can be set up to 32 bitwith <u>SSI_Set_Bits</u>.

Counter block

The module Pro II-MIO-D12 Rev. E provides 2 configurable multi-purpose counter blocks. Each counter block contains two 32-bit counters: First an up/down counter or four edge evaluation for connection of enceoders. Second, a PWM counter to evaluate high and low times, duty cycle, or frequency. Both counters of a block can be operated in parallel.

Counter 1 inputs run differential, counter 2 hsa optically isolated inputs (single ended).

Please note, that the pins of the counter inputs have double functionality. Is is technically permissable, to use both functions (timer and other functions) at the same time, though it may not be useful.

The up/down counter of a block can be operated in 2 modes:

Clock / direction (CLK and DIR signals)

A negative edge at the CLK input is the counting impulse for the 32-bit counter. The DIR signal sets the counting direction, TTL high means a count-up, TTL low means a count-down.

Via software, you can invert the signals at the inputs CLK and DIR (see P2_Cnt_Mode) and thus change the triggering edge as well as the count direction.

You can latch the counter values program-controlled or you can influence the counter by an external CLR/LATCH signal.

Depending on the programming the CLR/LATCH signal has either the effect that the counter values are cleared (CLR) or that the counter values are latched (LATCH). This function will only be effective when it is released by P2_Cnt_Clear_Enable or P2_Cnt_Latch_Enable.

The counter is cleared or latched with a rising adge at input CLR/LATCH. During the latch process the frequency of the measurement can be determined by getting the difference of two read latch values, because this difference defines the number of pulses between the two reading processes.

Four edge evaluation (A and B signals)

The four edge evaluation changes the signals (which should be 90° phase-shifted) of a connected incremental encoder at the inputs A and B to CLK and DIR signals. For this you have to program the inputs correspondingly (see "*ADwin-Pro* System Description, Programming in *ADbasic*").

Since every edge of the A and B signals generates a count impulse, the resolution is increased by factor 4. If the encoder has a reference signal, it can be used to clear or latch the counter (after release of the CLR or LATCH input). The counter is cleared when the signals A, B and CLR are on logic "1" (software-selectable: clear, when only the CLR signal is on logic "1").

The PWM counter of the counter block analyzes the signals at the PWM inputs. With P2_Cnt_Mode you set the input pin (A/CLK, B/DIR or CLR/LATCH) and the triggering edge.

Via software instructions the following data can be read directly:

- frequency and duty cycle
- high and low time

The counter inputs are provided on the 25-pole D-Sub connector Conn2; pin assignment see fig. 21.

TiCo processor

The module provides the freely programmable *TiCo* processor with 28kiB program memory, and 28KiB data memory. The internal memory serves as data and program memory. You program the *TiCo* processor with *TiCoBasic*.

The *TiCo* processor has access to all analog and digital input and output channels, as does the *ADwin* CPU. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual. **Up/down counter**

PWM Counter

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

Technical Specification

Transistor Outputs		
Output channels	12	
Switching voltage V _{CC}	530V DC durch externe Spannungsversorgung	
Switching current	200mA max. per channel	
Voltage drop	0.5V	
Switching time	2.5µs	
Isolation	42V channel-channel / channel-GND common ground for all OPT and TRA channels	
Optocouple Inputs		
Input channels	12	
Input current	typ. 3.5mA / max. 7.5mA	
Input voltage range (selectable via jumpers)	05V/012V/024V	
Switching threshold for 0-low	00.8V / 01.6V / 03.2V	
Switching threshold for 1-high	4.55V / 1012V / 2024V	
Input over-voltage	-5V 8V / -5V 16V / -5V 30V /	
Switching time	100ns	
Isolation	42V channel-channel / channel-GND common ground for all OPT and TRA channels	
Counter		
Number	2 universal counter blocks	
Counter resolution	32 bit	
Reference clock	50MHz	
Clock frequency four edge evaluation	12.5MHz max. (at 90° phase-shift of the signals)	
Clock frequency up/down counter	15MHz max.	
Reference frequency PWM analysis	100MHz	
Input / output level	1 counter compatible to RS422/485 (5V differential, 120 Ω bus terminating resistor)	
	1 counter via optocouples	
Isolation	optocouple inputs 42V channel-channel / channel-GND	
SSI Decoder		
Number	1	
Clock frequency SSI deccoder (CLK)	6kHz 12.5MHz	

Fig. 32 - Pro II-MIO-D12 Rev. E: Specification

General	
TiCo processor Processor type: TiCo1 Clock frequency: 50MHz Memory size: 28KiB PM internal, 28KiB DM nal	
Connectors	37-pin D-Sub female connector

Fig. 32 - Pro II-MIO-D12 Rev. E: Specification

Programmierung

The module is comfortably programmed with *ADbasic*. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Range	Instructions
Transistor Outputs	
Set and reset output signals	P2_MIO_Digout, P2_MIO_Digout_Long P2_MIO_Get_Digout_Long
Use latch register	P2_MIO_Dig_Latch, P2_Sync_All P2_MIO_Dig_Write_Latch
Set output levels automatically	P2_Dig_FIF0_Mode P2_Digout_FIF0_Clear P2_Digout_FIF0_Empty P2_Digout_FIF0_Enable P2_Digout_FIF0_Read_Timer P2_Digout_FIF0_Start P2_Digout_FIF0_Write
Optocouple Inputs	
Query input signals	P2_Digin_Edge P2_MIO_Digin_Long
Use latch register	P2_MIO_Dig_Latch, P2_Sync_All P2_MIO_Dig_Read_Latch
Control edges at input chan- nels	P2_Dig_FIF0_Mode P2_Digin_FIF0_Enable P2_Digin_FIF0_Read P2_Digin_FIF0_Read_Timer P2_Digin_FIF0_Clear P2_Digin_FIF0_Full
Counter Block	
Configure counter	P2_Cnt_Enable, P2_Cnt_Mode
Use counter	P2_Cnt_Clear, P2_Cnt_Get_Status P2_Cnt_Latch, P2_Sync_All P2_Cnt_Read, P2_Cnt_Read4 P2_Cnt_Read_Latch P2_Cnt_Read_Latch4
Use PWM counter	P2_Cnt_PW_Enable, P2_Cnt_PW_Latch P2_Cnt_Get_PW, P2_Cnt_Get_PW_HL
SSI Decoder	
Use SSI decoder	P2_SSI_Mode, P2_SSI_Set_Bits P2_SSI_Set_Clock P2_SSI_Set_Delay, P2_SSI_Read P2_SSI_Start, P2_SSI_Status

Programming in ADbasic

Pro II: Multi-IO-Module Pro II-MIO-D12 Rev. E

	Range	Instructions		
	General			
	Use LED	P2_Check_LED, P2_Set_LED		
	Synchronize	P2_Sync_All, P2_Sync_Enable P2_Sync_Stat		
	Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config		
Programming in TiCoBasic	The module can be program described in <i>TiCoBasic</i> online h	The module can be programmed with <i>TiCoBasic</i> . The instructions are described in <i>TiCoBasic</i> online help.		
	The include file MIO-D12_TiCo	o.inc contains instructions for the functions:		
	Range	Instructions		
	Transistor Outputs			
	Set and reset output signals	MIO_Digout, MIO_Digout_Long MIO_Get_Digout_Long		
	Use latch register	MIO_Dig_Latch MIO_Dig_Write_Latch		
	Optocouple Inputs			
	Query input signals	MIO_Digin_Long		
	Use latch register	MIO_Dig_Latch MIO_Dig_Read_Latch		
	Counter Block			
	Configure counter	Cnt_Enable, Cnt_Mode		
	Use counter	Cnt_Clear, Cnt_Get_Status Cnt_Latch, Cnt_Read Cnt_Read_Int_Register Cnt_Sync_Latch, Cnt_Read_Latch		
	Use PWM counter	Cnt_PW_Enable, Cnt_PW_Latch Cnt_Get_PW_HL		
	SSI Decoder			
	Use SSI decoder	SSI_Mode, SSI_Set_Bits SSI_Set_Clock SSI_Set_Delay, SSI_Read SSI_Start, SSI_Status		
	General			
	Use LED	Check_LED, Set_LED		
	Use interrupt and event inputs	Event_Enable, Event_Read Event_Config, Trigger_Event		

Programming TiCo access

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in ADbasic online help and in the TiCoBasic manual.

Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full
Control TiCo processor	P2_TiCo_Reset, P2_TiCo_Start,
	P2_TiCo_Stop
	P2_Get_TiCo_Bootloader_
	Status
	P2_Get_TiCo_Status, P2_Workload
Control TiCo processes	P2_Process_Status
	P2_TiCo_Get_Processdelay
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start_Process
	P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.5 Pro II: Analog Input Modules

This section describes analog input modules for ADwin-Pro II.

Analog input modules for *ADwin-Pro I* be found in the manual "ADwin-Pro Hardware" on page 19 ff.

Module name	Aln	Aln	Aln	Aln	Aln	Aln	Aln
	8/18	8/18-	32/18-D	32/18-D-	16/18-C	8/18-8B	16/18-8B
		TiCo		TiCo			
Revision	E	E	E	E	E	E	E
Number ADC	1	1	1	1	1	1	1
Resolution [Bit]	18	18	18	18	18	18	18
Max. conv. time [µs]	2	2	2	2	2	2	2
max. sampl. rate [ksample/s]	500	500	500	500	500	500	500
Channels diff.	8	8	16	16	16	8	-
Channels sng. end.	_	-	32	32	-	-	-
Channels 8B	_	-	-	-	-	8	16
Meas. range	±10V ±20mA ±10V			0V			
Gain	1, 2, 4, 8						
Calibration	by software						
TiCo processor	_	1	-	1	-	_	_
page	47	47	51	51	55	58	61

Module name	Aln	Aln	Aln	Aln	Aln	Aln
	F-4/14	F-8/14	F-4/16	F-8/16	F-4/18	F-8/18
Revision	E	E	Е	E	E	E
Number ADC	4	8	4	8	4	8
Resolution [Bit]	14	14	16	16	18	18
Max. conv. time [µs]	0.02	0.02	0.25	0.25	2	2
max. sampl. rate [ksample/s]	50000	4×50000 8×25000	4000	4000	500	500
Channels diff.	4	8	4	8	4	8
Meas. range	±10V					
Gain	1 1, 2, 4, 8 1			1		
Calibration	by software					
page	63	67	71	75	79	82

Note for open-ended inputs

- Open-ended inputs can cause errors above all in an environment where interferences may occur. You can avoid open-ended inputs this way:
- Separate unused inputs from open-ended lines.
- Apply a specified level (for instance GND) to unused inputs. Make the connection as close to the connector as possible.

5.5.1 Pro II-Aln-8/18 Rev. E

Analog input module Pro II-AIn-8/18 Rev. E with an 18 bit ADC, 8 differential inputs and a programmable amplifier (PGA). The module can be combined with amplifiers, Pro-TC and Pro-PT modules.

The module can be ordered in the following variants:

	no filter	filter 5kHz	filter 50kHz	filter 10kHz, range ±30V
LEMO 1-pole	Aln-8/18	Aln-8/18- LP5	_	Aln-8/18- LP-30V
LEMO 1-pole, TiCo processor	_	_	Aln-8/18- LP50-TiCo	Aln-8/18- LP-30V-TiCo
D-Sub	Aln-8/18-D	Aln-8/18- LP5-D	-	Aln-8/18- LP-30V-D
D-Sub, TiCo processor	-	-	Aln-8/18- LP50-D-TiCo	Aln-8/18-LP- 30V-D-TiCo

The variants Pro II-AIn-8/18-xxx-TiCo additionally provide a freely programmable *TiCo* processor with 28KiByte data memory and 28KiByte program memory, which has access to all inputs of the module. Find more information about use and programming of the *TiCo* processor in the manual *TiCoBasic*.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

The variants Pro II-AIn-8/18-xxx-LP contain an input filter, a 4th grade low pass of Butterworth type. According to the variant the frequency is set to 5kHz, 10kHz, or 50kHz.

The inputs are available with shielded LEMO connectors (1-pole, CAMAC European norm, see fig. 36) or .

The module Pro II-AIn-8/18 Rev. E has an input voltage range of $\pm 10V$ and a software selectable gain of 1, 2, 4 or 8. The adjustment of gain and offset is done by software (see chapter 6 "Calibration").

The module includes a sequential control, which can read measurement values from several or all input channels sequentially.

The module can control an upper and lower limit for each channel separately.

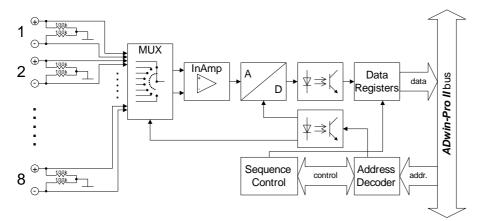


Fig. 33 – Pro II-Aln-8/18 Rev. E: Block diagram

TiCo processor

low pass filter

Input channels		8 differential via multiplexer	
Resolution		18 Bit	
Conversion time	Э	max. 2µs	
Sampling rate		max. 500ksps	
Multiplexer settl	ling time	2.5µs	
Measurement ra	ange	±10V	
Gain		1, 2, 4, 8 software selectable	
Accuracy	INL	±4 LSB typical	
DNL		max. ±1 LSB	
Input resistance		330kΩ, ±2%	
Input over-voltage		±35V	
Offset error		adjustable	
Offset drift		±30ppm/ºC	
TiCo processor, only with Pro II-Aln-8/18-L2-TiCo Rev. E		Processor type: TiCo1 Clock frequency: 50MHz Memory size: 28KiB PM internal, 28KiB DM internal	
Connector		8 LEMO female connectors, 1-pole or	

Fig. 34 – Pro II-Aln-8/18 Rev. E: Specification

2-pole LEMO female connector; series 00 Multi-Contact, type EGG

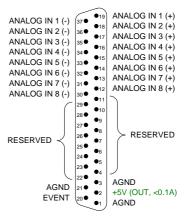


Fig. 35 - Pro II-Aln-8/18 Rev. E: Pin assignment

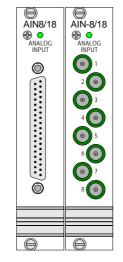


Fig. 36 - Pro II-AIn-8/18 Rev. E: Front panels

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Function	Instructions
Set inputs to single-ended or differential	P2_SE_Diff
Do a single conversion – com- plete or step by step	P2_ADC, P2_ADC24 P2_Set_Mux, P2_Start_Conv P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24
Read value and start new conversion	P2_Read_ADC_SConv P2_Read_ADC_SConv24
Use sequence control	P2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_Seq_Read24_Packed P2_Seq_Wait
Control input limits	P2_ADC_Read_Limit P2_ADC_Set_Limit
Synchronize	P2_Sync_All
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config, P2_Event2_Config

The module can be programmed with *TiCoBasic* instructions. The instructions are described in *TiCoBasic* online help.

The include file AInTiCo.inc contains instructions for the following functions:

Function	Instruction
Do a single conversion – com- plete or step by step	ADC, ADC24 Set_Mux, Start_Conv, Wait_EOC Read_ADC, Read_ADC24
Read value and start new con- version	Read_ADC_SConv Read_ADC_SConv24
Use LED	Check_LED, Set_LED
Use interrupt and event inputs	Event_Enable, Event_Read Event_Config, Trigger_Event

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Programming	TiCo
access	

Programming in

TiCoBasic

Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full

Function	Instructions
Control <i>TiCo</i> processor	P2_TiCo_Reset, P2_TiCo_Start, P2_TiCo_Stop P2_Get_TiCo_Bootloader_ Status P2_Get_TiCo_Status, P2_Workload
Control <i>TiCo</i> processes	P2_Process_Status P2_TiCo_Get_Processdelay P2_TiCo_Set_Processdelay P2_TiCo_Start_Process P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.5.2 Pro II-AIn-32/18-D Rev. E

Analog input module Pro II-AIn-32/18-D Rev. E with an 18 bit ADC, 32 differential inputs and a programmable amplifier (PGA). The module can be combined with amplifiers, Pro-TC and Pro-PT modules.

The variant Pro II-AIn-32/18-D-TiCo Rev. E additionally provides a freely programmable *TiCo* processor, which has access to all inputs of the module. Find more information about use and programming of the *TiCo* processor in the manual *TiCoBasic*.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

The module has 32 single-ended or 16 differential inputs (software selectable). The inputs are equipped with a 37-pin D-Sub female connector; for pin assignment see fig. 39 and 40.

After power-up the module is set to 16 differential inputs.

The module Pro II-AIn-32/18-D Rev. E has an input voltage range of $\pm 10V$ and a software selectable gain of 1, 2, 4 or 8. The adjustment of gain and offset is done by software (see chapter 6 "Calibration").

Ex works the inputs are connected to the ground of the Pro device. Alternatively a GND level signal-common for all inputs-can be connected to one of the AGND pins. The ground connection to the Pro device should be split up, by switching the DIL switch (see fig. 41) to position GND LIFT.

Do not run the module without ground connection.

The module includes a sequential control, which can read measurement values from several or all input channels sequentially.

The module can control an upper and lower limit for each channel separately.

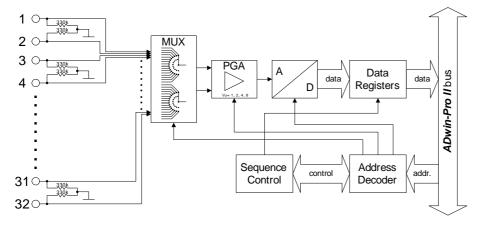


Fig. 37 - Pro II-Aln-32/18-D Rev. E: Block diagram

Input channels:	32 single ended or 16 differential; via multiplexer
Resolution:	18 bit
Conversion time:	max. 2µs
Sampling rate:	max. 500ksps
Multiplexer settling time:	2.5µs
Measurement range:	±10V

Fig. 38 - Pro II-Aln-32/18-D Rev. E: Specification

Gain:		1, 2, 4, 8 software selectable		
Accuracy INL		±4 LSB typical		
	DNL	max. ±1 LSB		
Input resistan	ce:	330kΩ, ±2%		
Input over-voltage:		±35V		
Offset error:		adjustable		
Offset drift:		±30ppm/ºC		
Connector:		37-pin D-Sub female connector		
TiCo processor, only with Pro II-Aln-8/18-L2-TiCo Rev. E		Processor type: TiCo1 Clock frequency: 50MHz Memory size: 28KiB PM internal, 28KiB DM internal		

Fig. 38 - Pro II-AIn-32/18-D Rev. E: Specification

Pin assignment single ended

Fig. 39 – Pro II-Aln-32/18-D Rev. E: Fig. 40 – Pro II-Aln-32/18-D Rev. E: Pin assignment differential

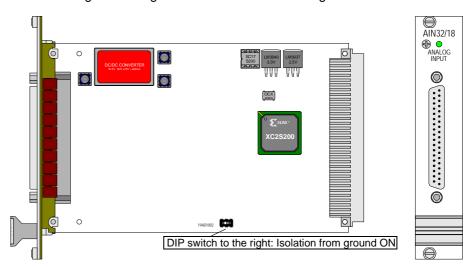


Fig. 41 - Pro II-Aln-32/18-D Rev. E: Board and front panel

Programming in ADbasic

The module is comfortably programmed with ADbasic instructions. The instructions are described in ADbasic online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains instructions for the following functions:

Function	Instructions
Set inputs to single-ended or differential	P2_SE_Diff
Do a single conversion – com- plete or step by step	P2_ADC, P2_ADC24 P2_Set_Mux, P2_Start_Conv P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24
Read value and start new con- version	P2_Read_ADC_SConv P2_Read_ADC_SConv24
Use sequence control	P2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_Seq_Read24_Packed P2_Seq_Wait
Control input limits	P2_ADC_Read_Limit P2_ADC_Set_Limit
Synchronize	P2_Sync_All
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config, P2_Event2_Config

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full
Control TiCo processor	P2_TiCo_Reset, P2_TiCo_Start,
	P2_TiCo_Stop
	P2_Get_TiCo_Bootloader_
	Status
	P2_Get_TiCo_Status, P2_Workload
Control TiCo processes	P2_Process_Status
	P2_TiCo_Get_Processdelay
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start_Process
	P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

The module can be programmed with *TiCoBasic* instructions. The instructions are described in *TiCoBasic* online help.

The include file AInTiCo.inc contains instructions for the following functions:

Function	Instruction
Set inputs to s.e. or differential	SE_Diff

Programming TiCo access

Programming in

TiCoBasic

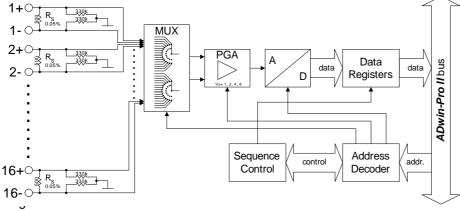
Function	Instruction
Do a single conversion – com- plete or step by step	ADC, ADC24 Set_Mux, Start_Conv, Wait_EOC Read_ADC, Read_ADC24
Read value and start new con- version	Read_ADC_SConv Read_ADC_SConv24
Use LED	Check_LED, Set_LED
Use interrupt and event inputs	Event_Enable, Event_Read Event_Config, Trigger_Event

5.5.3 Pro II-AIn-16/18-C Rev. E

Analog input module Pro II-AIn-16/18-C Rev. E with an 18 bit ADC, 16 differential inputs and a programmable amplifier (PGA). The module can be combined with amplifiers, Pro-TC and Pro-PT modules.

The module has 16 differential current inputs. The inputs are equipped with a 37-pin D-Sub female connector; for pin assignment see fig. 44.

The module variant with voltage inputs Pro II-AIn-32/18-D Rev. E is described on page 51.


The module Pro II-AIn-16/18-C Rev. E has an input voltage range of ± 20 mA and a software selectable gain of 1, 2, 4 or 8. The adjustment of gain and offset is done by software (see chapter 6 "Calibration").

Ex works the inputs are connected to the ground of the Pro device. Alternatively a GND level signal-common for all inputs-can be connected to one of the AGND pins. The ground connection to the Pro device should be split up, by switching the DIL switch (see fig. 41) to position GND LIFT.

Do not run the module without ground connection.

The module includes a sequential control, which can read measurement values from several or all input channels sequentially.

The module can control an upper and lower limit for each channel separately.

Pro II-Aln-16/18-C Rev. E: Block diagram

	i
Input channels:	16 differential via multiplexer
Resolution:	18 bit
Conversion time:	max. 2µs
Sampling rate:	max. 500ksps
Multiplexer settling time:	2.5µs
Measurement range:	±20mA
Gain:	1, 2, 4, 8 software selectable
Accuracy INL	±4 LSB typical +0.05% of measured voltage by input resis- tance
DNL	max. ±1 LSB +0.05% of measured voltage by input resis- tance
Input resistance:	500kΩ, ±2%
Input over-voltage:	±15V

Fig. 43 – Pro II-Aln-16/18-C Rev. E: Specification

Pro II: Analog Input Modules Pro II-Aln-16/18-C Rev. E

ADwin

±30ppm/ºC
37-pin D-Sub female connector
$\begin{array}{c} 1(-) & (37 - 61) \\ 2(-) & (37 - 61) \\ 2(-) & (36 - 61) \\ 3(-) & (35 - 61) \\ 3(-) & (35 - 61) \\ 3(-) & (35 - 61) \\ 3(-) & (35 - 61) \\ 4(-) & (34 - 61) \\ 4(-) & (34 - 61) \\ 4(-) & (34 - 61) \\ 4(-) & (34 - 61) \\ 5(-) & (33 - 61) \\ 5(-) &$

Fig. 44 - Pro II-AIn-16/18-C Rev. E: Pin assignment

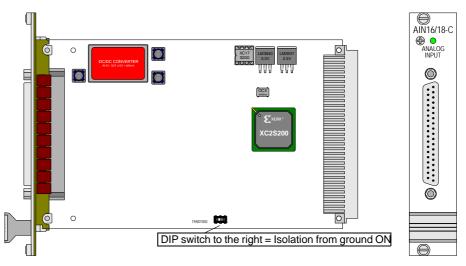


Fig. 45 - Pro II-Aln-16/18-C Rev. E: Board and front panel

Programming in ADbasic

The module is comfortably programmed with *ADbasic* instructions, described in *ADbasic* online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains the following instructions:

Function	Instructions
Set inputs to single-ended or differential	P2_SE_Diff
Do a single conversion – com- plete or step by step	P2_ADC, P2_ADC24 P2_Set_Mux, P2_Start_Conv P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24
Read value and start new conversion	P2_Read_ADC_SConv P2_Read_ADC_SConv24
Use sequence control	P2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_Seq_Read24_Packed P2_Seq_Wait

Function	Instructions
Control input limits	P2_ADC_Read_Limit
	P2_ADC_Set_Limit
Synchronize	P2_Sync_All
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config, P2_Event2_Config

5.5.4 Pro II-Aln-8/18-8B Rev. E

Analog input module Pro II-AIn-8/18-8B Rev. E with an 18 bit ADC, 16 analog inputs and a programmable amplifier (PGA). The module is based upon Pro II-AIn-32/18-D Rev. E with an additional board holding 8 plug-in slots for 8B modules.

The 16 inputs are divided to 8 inputs for 8B modules and 8 differential inputs. The inputs are provided on two 37-pin D-Sub female connectors; for pin assignments see fig. 47.

The input voltage range after 8B modules is $\pm 10V$. Gain is software selectable to 1, 2, 4 or 8. The adjustment of gain and offset is done by software (see chapter 6 "Calibration").

Ex works the inputs are connected to the ground of the Pro device. Alternatively a GND level signal-common for all inputs-can be connected to one of the AGND pins. The ground connection to the Pro device should be split up, by switching the DIL switch (see fig. 41) to position GND LIFT.

Do not run the module without ground connection.

The module includes a sequential control, which can read measurement values from several or all input channels sequentially.

The module can control an upper and lower limit for each channel separately.

Input channels	:	16 via multiplexer: 8 for 8B modules, 8 differential
Resolution:		18 bit
Conversion tim	ne:	max. 2µs
Sampling rate:		max. 500ksps
Multiplexer set	tling time:	2.5µs
Measurement	range:	±10V
Gain:		1, 2, 4, 8 software selectable
Accuracy	INL	±4 LSB typical
	DNL	max. ±1 LSB
Input resistanc	e:	330kΩ, ±2%
Input over-volt	age:	±35V
Offset error:		adjustable
Offset drift:		±30ppm/ºC
Connector:		37-pin D-Sub female connector

Fig. 46 – Pro II-Aln-8/18-8B Rev. E: Specification

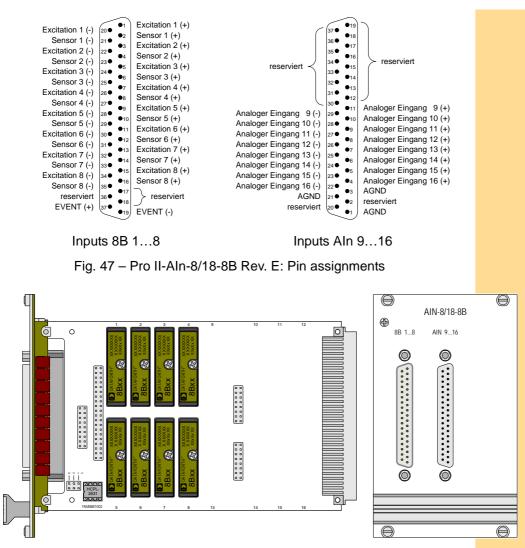


Fig. 48 - Pro II-AIn-8/18-8B Rev. E: Board and front panel

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

Programming

The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Function	Instructions
Do a single conversion – com- plete or step by step	P2_ADC, P2_ADC24 P2_Set_Mux, P2_Start_Conv P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24
Read value and start new conversion	P2_Read_ADC_SConv P2_Read_ADC_SConv24
Use sequence control	P2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_Seq_Read24_Packed P2_Seq_Wait
Control input limits	P2_ADC_Read_Limit P2_ADC_Set_Limit
Synchronize	P2_Sync_All
Use LED	P2_Check_LED, P2_Set_LED

Function	Instructions
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read
	P2_Event_Config, P2_Event2_Config

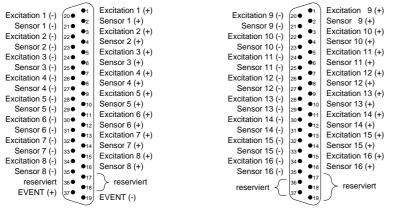
5.5.5 Pro II-Aln-16/18-8B Rev. E

Analog input module Pro II-AIn-16/18-8B Rev. E with an 18 bit ADC, 16 analog inputs and a programmable amplifier (PGA). The module is based upon Pro II-AIn-32/18-D Rev. E with an additional board holding 16 plug-in slots for 8B modules.

The module has 16 inputs (via 8B modules) provided on two 37-pin D-Sub female connectors; for pin assignments see fig. 50.

The input voltage range after 8B modules is $\pm 10V$. Gain is software selectable to 1, 2, 4 or 8. The adjustment of gain and offset is done by software (see chapter 6 "Calibration").

Ex works the inputs are connected to the ground of the Pro device. Alternatively a GND level signal-common for all inputs-can be connected to one of the AGND pins. The ground connection to the Pro device should be split up, by switching the DIL switch (see fig. 41) to position GND LIFT.


Do not run the module without ground connection.

The module includes a sequential control, which can read measurement values from several or all input channels sequentially.

The module can control an upper and lower limit for each channel separately.

18 bit max. 2µs
max 2us
man = µ0
max. 500ksps
2.5µs
±10V
1, 2, 4, 8 software selectable
±4 LSB typical
max. ±1 LSB
330kΩ, ±2%
±35V
adjustable
±30ppm/ºC
37-pin D-Sub female connector

Fig. 49 - Pro II-AIn-16/18-8B Rev. E: Specification

Eingänge 8B 1...8

Eingänge 8B 9...16

Fig. 50 - Pro II-AIn-16/18-8B Rev. E: Pin assignments

Pro II: Analog Input Modules Pro II-Aln-16/18-8B Rev. E

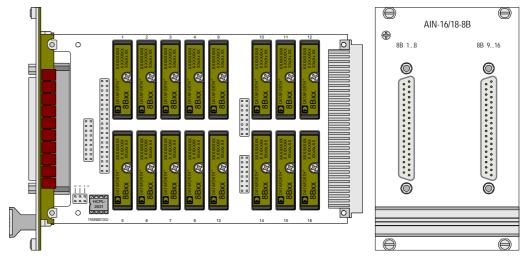


Fig. 51 - Pro II-AIn-16/18-8B Rev. E: Board and front panel

Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Function	Instructions
Set inputs to single-ended or differential	P2_SE_Diff
Do a single conversion – com- plete or step by step	P2_ADC, P2_ADC24 P2_Set_Mux, P2_Start_Conv P2_Wait_EOC P2_Read_ADC, P2_Read_ADC24
Read value and start new con- version	P2_Read_ADC_SConv P2_Read_ADC_SConv24
Use sequence control	P2_Seq_Init, P2_Seq_Start P2_Seq_Read, P2_Seq_Read24 P2_Seq_Read24_Packed P2_Seq_Wait
Control input limits	P2_ADC_Read_Limit P2_ADC_Set_Limit
Synchronize	P2_Sync_All
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config, P2_Event2_Config

5.5.6 Pro II-Aln-F-4/14 Rev. E

The analog input module Pro II-AIn-F-4/14 Rev. E has 4 Fast-ADC of 14 Bit and 4 differential inputs.

The inputs are available with the following connectors:

- Pro II-AIn-F-4/14: shielded LEMO connectors, 1-pole, CAMAC European norm.
- Pro II-AIn-F-4/14-L2: shielded LEMO connectors, 2-pole, CAMAC European norm.
- Pro II-AIn-F-4/14-D: D-Sub female connector 37-pin.
- Pro II-AIn-F-4/14-B: BNC female connectors.

The module's converters run stand-alone with a fixed clock rate of 50MHz; the program fetches only the recently converted measurement values. The module memory enables to buffer the great data volume of burst sequences.

The module Pro II-AIn-F-4/14 Rev. E has an input voltage range of $\pm 10V$. The adjustment of gain and offset is made by software. (see chapter 6 "Calibration").

The module provides several operation modes for converting analog signals:

- Single measurement: The module converts stand-alone (with fixed clock rate). The *ADbasic* program queries the current measurement value and processes them.
- Single burst sequence: The *ADbasic* program starts a compelete burst measurement sequence, that is a defined number of single measurements.
- Continuous burst sequence: The *ADbasic* program starts a burst measurement sequence, that continuously does single measurements until the sequence is stopped. The data is stored in a fifo-like memory.

As an option, the module can return the moving average of 2...32 measurement values instead of simple measurement values. For each average value, the module separately samples the number of set measurement values.

The module can control an upper and lower limit for each channel separately.

The module processes burst sequences independent from the processor module of the *ADwin* system. The measurement values–number and measuring rate to be defined ahead in the program–are stored in the burst-memory of the module. The processor module then reads the stored values (even during a burst sequence) and processes them.

With a continuous burst-sequence the measuring rate must be syntonized to the reading rate. Please note:

 Measurement values are always read in blocks, the block size is selectable. The greater the data blocks are, the faster the average reading is done.

Look out: While a block is read, other processes even with higher priority may be delayed. The probability of a delay rises with the block size.

 The time offset between continuous conversion and blockwise reading demands a data buffer. Therefore, the initialization of the burst sequence must allocate sufficient memory range (P2_Burst_Init, parameter samples).

With module version Pro II-AIn-F-4/14-D Rev. E (D-Sub female connector) a burst sequence can be controlled by external event signals, i.e. each (resulting) event signal has a measurement value stored.

Burst Sequence

Event Inputs

As an option one channel of the burst sequence may be used as time channel, which holds the counter value of the internal module timer for each event signal.

The module is equipped with 3 differential event inputs: EVENT/A, B, ENABLE, whose signals are processed to the resulting event signal. This pre-processing of signals be configured with P2_Event2_Config.

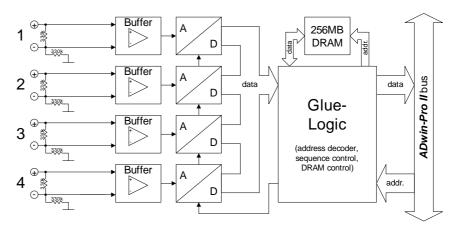


Fig. 52 - Pro II-AIn-F-4/14 Rev. E: Block diagram

Input channels		4 differential
Resolution		14 Bit
Conversion time		0.02µs (per ADC)
Sampling rate		50000ksps (per ADC)
Input band width		0 4MHz
Memory size		256MiB or 2 ²⁷ = 134217728 values total
Measurement range		±10V with max. offset 3.5 V
Accuracy	INL	typical ±1.2 LSB, max. ±5 LSB
	DNL	typical ±0.5 LSB, max. ±1 LSB
Input resistance	е	330kΩ, ±2%
Input over-voltage		±35V
Offset error		adjustable
Offset drift		±30ppm/°C of full scale range
Event input (D-Sub only)		3 differential; RS422/485 compatible (5V differential, 120 Ω bus terminating resistor) max. signal frequency 16MHz
Connector		4 LEMO female connectors. 1-pole, or 4 LEMO female connectors. 2-pole, or 37-pin D-Sub female connector, or 4 BNC female connectors.

Fig. 53 - Pro II-AIn-F-4/14 Rev. E: Specification

Pro II: Analog Input Modules Pro II-AIn-F-4/14 Rev. E

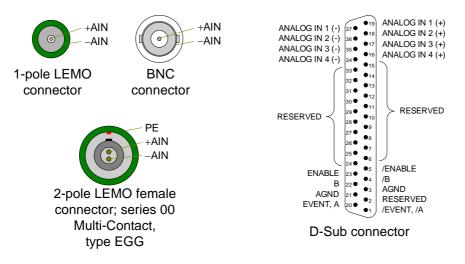


Fig. 54 - Pro-Aln-F-4/14-D Rev. E: Pin assignment differential

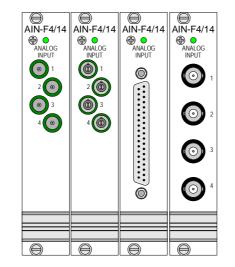


Fig. 55 – Pro II-AIn-F-4/14 Rev. E: Front panels

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

Programming

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Function	Instructions
Configure sequence control	P2_ADCF_Mode
Do a single conversion – com- plete or step by step	P2_ADCF P2_Start_Conv, P2_Wait_EOCF P2_Read_ADCF
Read several values	P2_Read_ADCF32, P2_Read_ADCF4 P2_Read_ADCF4_Packed

Function	Instructions
Use burst conversion	P2_Burst_Init
	P2_Burst_Start, P2_Burst_Stop
	P2_Burst_Status, P2_Burst_Reset
	P2_Burst_Read
	P2_Burst_Read_Index,
	P2_Burst_Read_Index
	P2_Burst_Read_Unpacked1/2/4
	P2_Burst_CRead_Unpacked1/2/4
	P2_Burst_CRead_Pos_Unpacked1/2/4
Synchronize	P2_Sync_All, P2_Sync_Enable
	P2_Sync_Stat
Control input limits	P2_ADCF_Read_Limit
	P2_ADCF_Set_Limit
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read
	P2_Event_Config, P2_Event2_Config

5.5.7 Pro II-Aln-F-8/14 Rev. E

The analog input module Pro II-AIn-F-8/14 Rev. E has 8 Fast-ADC of 14 Bit and 8 differential inputs.

The inputs are available with the following connectors:

- Pro II-AIn-F-8/14-L2: shielded LEMO female connectors, 1-pole, CAMAC European norm.
- Pro II-AIn-F-8/14-L2: shielded LEMO female connectors, 2-pole, CAMAC European norm.
- Pro II-AIn-F-8/14-D: D-Sub female connector 37-pin.
- Pro II-AIn-F-8/14-B: BNC female connectors.

The module's converters run stand-alone with a fixed clock rate of 50MHz. If converting measurement values from all 8 channels, the sampling rate is limited to 25MHz due to the maximum memory access rate.

The module Pro II-AIn-F-8/14 Rev. E has an input voltage range of $\pm 10V$. The adjustment of gain and offset is made by software. (see chapter 6 "Calibration").

The great data volume of burst sequences is buffered in the module memory.

The module provides several operation modes for converting analog signals:

- Single measurement: The module converts stand-alone (with fixed clock rate). The *ADbasic* program queries the current measurement value and processes them.
- Single burst sequence: The ADbasic program starts a compelete burst measurement sequence, that is a defined number of single measurements.
- Continuous burst sequence: The *ADbasic* program starts a burst measurement sequence, that continuously does single measurements until the sequence is stopped. The data is stored in a fifo-like memory.

As an option, the module can return the moving average of 2...32 measurement values instead of simple measurement values. For each average value, the module separately samples the number of set measurement values.

The module can control an upper and lower limit for each channel separately.

The module processes burst sequences independent from the processor module of the *ADwin* system. The measurement values–number and measuring rate to be defined ahead in the program–are stored in the burst-memory of the module. The processor module then reads the stored values (even during a burst sequence) and processes them.

With a continuous burst-sequence the measuring rate must be syntonized to the reading rate. Please note:

 Measurement values are always read in blocks, the block size is selectable. The greater the data blocks are, the faster the average reading is done.

Look out: While a block is read, other processes even with higher priority may be delayed. The probability of a delay rises with the block size.

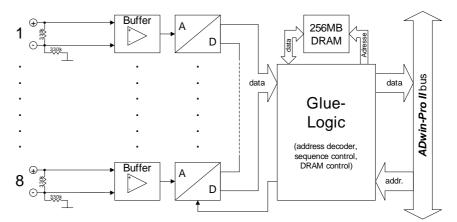
 The time offset between continuous conversion and blockwise reading demands a data buffer. Therefore, the initialization of the burst sequence must allocate sufficient memory range (P2_Burst_Init, parameter samples). **Burst Sequence**

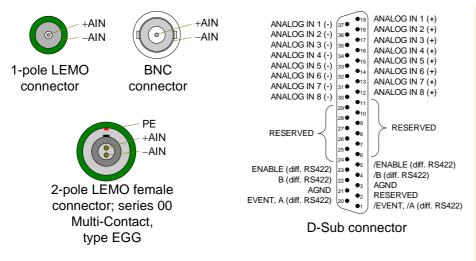
Event Inputs

With module version Pro II-AIn-F-8/14-D Rev. E (D-Sub female connector) a burst sequence can be controlled by external event signals, i.e. each (resulting) event signal has a measurement value stored.

As an option one channel of a burst sequence may be used as time channel, holding the counter value of the internal module timer for each event signal.

The module is equipped with 3 differential event inputs: EVENT/A, B, ENABLE, whose signals are processed to the resulting event signal. This pre-processing of signals be configured with P2_Event2_Config.




Fig. 56 - Pro II-AIn-F-8/14 Rev. E: Block diagram

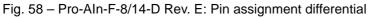

Input channels		8 differential
Resolution		14 Bit
Conversion time		0.02µs (per ADC)
Sampling rate		4×50000ksps (per ADC) or 8×25000ksps (per ADC)
Input band width		0 4MHz
Memory size		256MiB or 2 ²⁷ = 134217728 values total
Measurement range		±10V with max. offset 3.5 V
Accuracy	INL	typical ±1.2 LSB, max. ±5 LSB
	DNL	typical ±0.5 LSB, max. ±1 LSB
Input resistance		330kΩ, ±2%
Input over-voltage		±35V
Offset error		adjustable
Offset drift		±30ppm/ºC of full scale range
Event input (D-Sub only)		3 differential; RS422/485 compatible (5V differential, 120 Ω bus terminating resistor) max. signal frequency 16MHz
Connector		8 LEMO female connectors. 1-pole, or 8 LEMO female connectors. 2-pole, or 37-pin D-Sub female connector, or 8 BNC female connectors.

Fig. 57 – Pro II-AIn-F-8/14 Rev. E: Specification

Pro II: Analog Input Modules Pro II-AIn-F-8/14 Rev. E

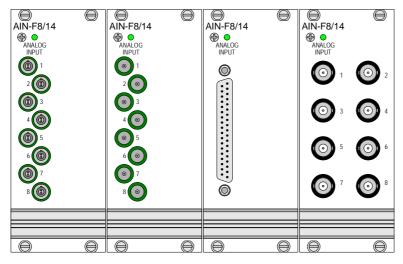


Fig. 59 - Pro II-AIn-F-8/14 Rev. E: Front panels

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Function	Instructions
Configure sequence control	P2_ADCF_Mode
Do a single conversion – com- plete or step by step	P2_ADCF P2_Start_Conv, P2_Wait_EOCF P2_Read_ADCF
Read several values	P2_Read_ADCF32 P2_Read_ADCF4, P2_Read_ADCF8 P2_Read_ADCF4_Packed P2_Read_ADCF8_Packed
Read value and start new con- version	P2_Read_ADC_SConv P2_Read_ADC_SConv32

Programming

Function	Instructions
Use burst conversion	P2_Burst_Init
	P2_Burst_Start, P2_Burst_Stop
	P2_Burst_Status, P2_Burst_Reset
	P2_Burst_Read
	P2_Burst_Read_Index,
	P2_Burst_Read_Index
	P2_Burst_Read_Unpacked1/2/4/8
	P2_Burst_CRead_Unpacked1/2/4/8
	P2_Burst_CRead_Pos_Unpacked1/2/4/8
Synchronize	P2_Sync_All, P2_Sync_Enable
	P2_Sync_Mode, P2_Sync_Stat
Control input limits	P2_ADCF_Read_Limit
	P2_ADCF_Set_Limit
	P2_ADCF_Reset_Min_Max,
	P2_ADCF_Read_Min_Max4
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read
	P2_Event_Config, P2_Event2_Config

5.5.8 Pro II-Aln-F-4/16 Rev. E

The analog input module Pro II-AIn-F-4/16 Rev. E has 4 Fast-ADC of 16 Bit and 4 differential inputs.

The inputs are available with the following connectors:

- Pro II-AIn-F-4/16: shielded LEMO connectors, 1-pole, CAMAC European norm.
- Pro II-AIn-F-4/16-L2: shielded LEMO connectors, 2-pole, CAMAC European norm.
- Pro II-AIn-F-4/16-D: D-Sub female connector 37-pin.
- Pro II-AIn-F-4/16-B: BNC female connectors.

The module's converters run with a clock rate of up to 4MHz. Since revision E04, module memory enables to buffer data–especially with burst sequences.

The module Pro II-AIn-F-4/16 Rev. E has an input voltage range of $\pm 10V$ and a software selectable gain of 1, 2, 4 or 8. The adjustment of gain and offset is done by software (see chapter 6 "Calibration").

Since revision E04, the module provides several operation modes for converting analog signals:

- Single measurement: You start each conversion manually, query the measurement value and processes it in the *ADbasic* program.
- Single burst sequence: The *ADbasic* program starts a compelete burst measurement sequence, that is a defined number of single measurements.
- Continuous burst sequence: The *ADbasic* program starts a burst measurement sequence, that continuously does single measurements until the sequence is stopped. The data is stored in a fifo-like memory.

As an alternative to the operation modes above, the module can perform a simultaneous conversion on all channels using a sequence control. This disburdens–compared to single measurements with the instruction P2_ADCF–the processor module which only reads and processes the converted measurement values. The conversion can be either triggered periodically with regular time delays or by external event signals.

As an option, the module can return the moving average of 2...32 measurement values instead of simple measurement values. For each average value, the module separately samples the number of set measurement values.

The module can control an upper and lower limit for each channel separately.

The module collects the maximum and minimum value of each channel and provides them via software instruction.

The module processes burst sequences independent from the processor module of the *ADwin* system. The measurement values–number and measuring rate to be defined ahead in the program–are stored in the burst-memory of the module. The processor module then reads the stored values (even during a burst sequence) and processes them.

Burst sequences are available since rev. E04.

With a continuous burst-sequence the measuring rate must be syntonized to the reading rate. Please note:

 Measurement values are always read in blocks, the block size is selectable. The greater the data blocks are, the faster the average reading is done. **Burst Sequence**

Look out: While a block is read, other processes even with higher priority may be delayed. The probability of a delay rises with the block size.

The time offset between continuous conversion and blockwise reading demands a data buffer. Therefore, the initialization of the burst sequence must allocate sufficient memory range (P2_Burst_Init, parameter samples).

With module version Pro II-Aln-F-4/16-D Rev. E (D-Sub female connector) a burst sequence can be controlled by external event signals, i.e. each (resulting) event signal has a measurement value stored.

As an option one channel of the burst sequence may be used as time channel, which holds the counter value of the internal module timer for each event signal.

The module is equipped with 3 differential event inputs: EVENT/A, B, ENABLE, whose signals are processed to the resulting event signal. This pre-processing of signals be configured with **P2_Event2_Config**.

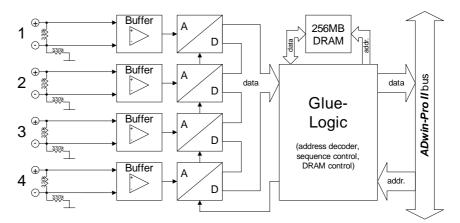


Fig. 60 - Pro II-Aln-F-4/16 Rev. E: Block diagram

Input channels		4 differential
Resolution		16 Bit
Conversion time		0.25µs (per ADC)
Input band widt	h	0 600kHz
Memory size (since rev. E04)		256MiB or 2 ²⁷ = 134217728 values total
Measurement range		±10V with max. offset 3.5 V
Gain		1, 2, 4, 8 software selectable
Accuracy	INL	typical ±1.2 LSB, max. ±5 LSB
	DNL	typical ±0.5 LSB, max. ±1 LSB
Input resistance		330kΩ, ±2%
Input over-voltage		±20V
Offset error		adjustable
Offset drift		±30ppm/ºC of full scale range
Event input (D-Sub only)		3 differential; RS422/485 compatible (5V differential, 120 Ω bus terminating resistor)

Fig. 61 - Pro II-AIn-F-4/16 Rev. E: Specification

ADwin-Pro II Hardware, manual March 2014

Event Inputs

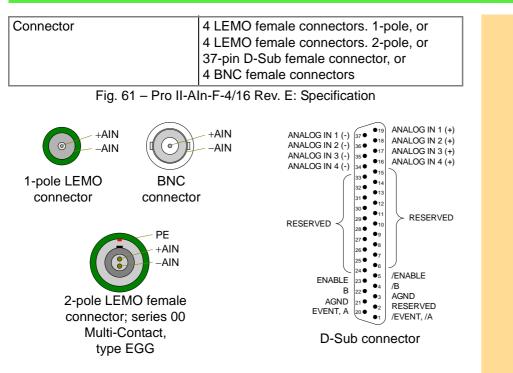


Fig. 62 - Pro-Aln-F-4/16-D Rev. E: Pin assignment differential

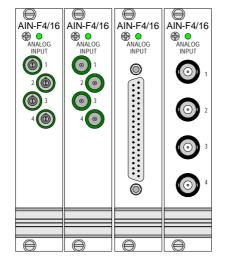


Fig. 63 – Pro II-AIn-F-4/16 Rev. E: Front panels

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Function	Instructions
Configure sequence control	P2_ADCF_Mode, P2_Set_Average_Filter, P2_Set_Gain
Do a single conversion – com- plete or step by step	P2_ADCF P2_Start_ConvF, P2_Wait_EOCF P2_Read_ADCF

Programming

Function	Instructions
Read several values	P2_Read_ADCF32
	P2_Read_ADCF4
	P2_Read_ADCF4_Packed
Read value and start new con-	P2_Read_ADC_SConv
version	P2_Read_ADC_SConv32
Use burst conversion	P2_Burst_Init
	P2_Burst_Start, P2_Burst_Stop
	P2_Burst_Status, P2_Burst_Reset
	P2_Burst_Read
	P2_Burst_Read_Index,
	P2_Burst_Read_Index
	P2_Burst_Read_Unpacked1/2/4
	P2_Burst_CRead_Unpacked1/2/4
	P2_Burst_CRead_Pos_Unpacked1/2/4
Synchronize	P2_Sync_All, P2_Sync_Enable
	P2_Sync_Mode, P2_Sync_Stat
Control input limits	P2_ADCF_Read_Limit
	P2_ADCF_Set_Limit
	P2_ADCF_Reset_Min_Max,
	P2_ADCF_Read_Min_Max4,
	P2_ADCF_Read_Min_Max8
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read
	P2_Event_Config, P2_Event2_Config

5.5.9 Pro II-Aln-F-8/16 Rev. E

The analog input module Pro II-AIn-F-8/16 Rev. E has 8 Fast-ADC of 14 Bit and 8 differential inputs.

The module can be ordered in the following variants:

	no filter	filter 50kHz	filter 10kHz, range ±30V
LEMO 1-pole	Aln-F-8/16	Aln-F-8/16- LP50	Aln-F-8/16- LP-30V
LEMO 2-pole	Aln-F-8/16-L2	Aln-F-8/16- LP50-L2	Aln-F-8/16- LP-30V-L2
D-Sub	Aln-F-8/16-D	Aln-F-8/16- LP50-D	Aln-F-8/16- LP-30V-D
BNC	Aln-F-8/16-B	Aln-F-8/16- LP50-B	Aln-F-8/16- LP-30V-D-B

The variants Pro II-AIn-8/18-xxx-LP contain an input filter, a 4th grade low pass of type Typ Butterworth. According to the variant the frequency is set to 10kHz or 50kHz.

The inputs are provided on shielded LEMO sockets (1-pole or 2-pole, CAMAC European norm, see fig. 66), BNC sockets, or 37-pin D-Sub connector.

The module's converters run with a clock rate of up to 4MHz. Since revision E04, module memory enables to buffer data–especially with burst sequences.

The module Pro II-AIn-F-8/16 Rev. E has an input voltage range of $\pm 10V$ and a software selectable gain of 1, 2, 4 or 8. The adjustment of gain and offset is done by software (see chapter 6 "Calibration").

Since revision E04, the module provides several operation modes for converting analog signals:

- Single measurement: You start each conversion manually, query the measurement value and processes it in the *ADbasic* program.
- Single burst sequence: The ADbasic program starts a compelete burst measurement sequence, that is a defined number of single measurements.
- Continuous burst sequence: The ADbasic program starts a burst measurement sequence, that continuously does single measurements until the sequence is stopped. The data is stored in a fifo-like memory.

As an alternative to the operation modes above, the module can perform a simultaneous conversion on all channels using a sequence control. This disburdens–compared to single measurements with the instruction P2_ADCF–the processor module which only reads and processes the converted measurement values. The conversion can be either triggered periodically with regular time delays or by external event signals.

As an option, the module can return the average of 2...32 measurement values instead of simple measurement values. In this case the selected number of measurement values is converted before the average can be calculated.

The module can control a lower and an upper limit for each channel separately.

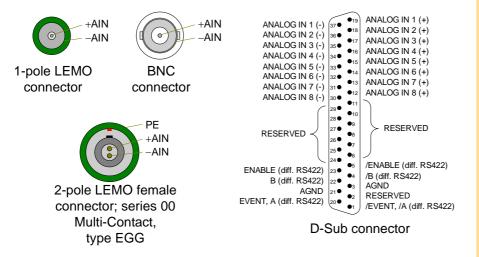
The module gathers the maximum and the minimum value for each channel and provides the values per software instructions.

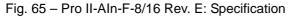
The module processes burst sequences independent from the processor module of the *ADwin* system. The measurement values–number and measuring rate to be defined ahead in the program–are stored in the burst-memory of the module. The processor module then reads the stored values (even during a **Burst Sequence**

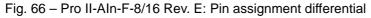
burst sequence) and processes them. Burst sequences are available since rev. E04. With a continuous burst-sequence the measuring rate must be syntonized to the reading rate. Please note: Measurement values are always read in blocks, the block size is selectable. The greater the data blocks are, the faster the average reading is done. Look out: While a block is read, other processes even with higher priority may be delayed. The probability of a delay rises with the block size. The time offset between continuous conversion and blockwise reading demands a data buffer. Therefore, the initialization of the burst sequence must allocate sufficient memory range (**P2_Burst_Init**, parameter samples). **Event Inputs** With module version Pro II-AIn-F-8/16-D Rev. E (D-Sub female connector) a burst sequence can be controlled by external event signals, i.e. each (resulting) event signal has a measurement value stored. As an option one channel of a burst sequence may be used as time channel, holding the counter value of the internal module timer for each event signal. The module is equipped with 3 differential event inputs: EVENT/A, B, ENABLE, whose signals are processed to the resulting event signal. This pre-processing of signals be configured with **P2_Event2_Config**. Buffer Δ 1 D \bigcirc _330k___ ADwin-Pro II bus data data Glue-Logic (address decoder sequence control DRAM control) Buffer A 8 addr. D 330k Fig. 64 - Pro II-Aln-F-8/16 Rev. E: Block diagram 8 differential Input channels Resolution 16 Bit Conversion time 0.25µs (per ADC) Input band width 0 ... 600kHz Memory size (since rev. E04) 256 MiB or 2²⁷ = 134217728 values total ±10V with max. offset 3.5 V Measurement range Gain 1, 2, 4, 8 software selectable typical ±1.2 LSB, max. ±5 LSB INL Accuracy DNL typical ±0.5 LSB, max. ±1 LSB 330kΩ, ±2%

Input resistance Input over-voltage

Offset error


adjustable Fig. 65 – Pro II-AIn-F-8/16 Rev. E: Specification


±20V



Pro II: Analog Input Modules Pro II-AIn-F-8/16 Rev. E

Offset drift	±30ppm/°C of full scale range
Event input (D-Sub only)	3 differential; RS422/485 compatible (5V differential, 120 Ω bus terminating resistor)
Connector	8 LEMO female connectors. 1-pole, or 8 LEMO female connectors. 2-pole, or 37-pin D-Sub female connector, or 8 BNC female connectors.

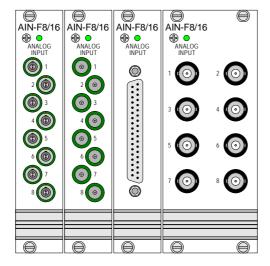


Fig. 67 – Pro II-AIn-F-8/16 Rev. E: Front panels

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains instructions for the following functions:

Function	Instructions
Configure sequence control	P2_ADCF_Mode,
	P2_Set_Average_Filter,
	P2_Set_Gain

Programming

Function	Instructions	
Do a single conversion – com- plete or step by step	- P2_ADCF P2_Start_ConvF,P2_Wait_EOCF P2_Read_ADCF	
Read several values	P2_Read_ADCF32 P2_Read_ADCF4, P2_Read_ADCF8 P2_Read_ADCF4_Packed P2_Read_ADCF8_Packed	
Read value and start new con- version	P2_Read_ADC_SConv P2_Read_ADC_SConv32	
Use burst conversion	P2_Burst_Init P2_Burst_Start, P2_Burst_Stop P2_Burst_Status, P2_Burst_Reset P2_Burst_Read P2_Burst_Read_Index, P2_Burst_Read_Index P2_Burst_Read_Unpacked1/2/4/8 P2_Burst_CRead_Unpacked1/2/4/8 P2_Burst_CRead_Pos_Unpacked1/2/4/8	
Synchronize	P2_Sync_All, P2_Sync_Enable P2_Sync_Stat	
Control input limits	P2_ADCF_Read_Limit P2_ADCF_Set_Limit	
Provide maximum and minimum values	P2_ADCF_Reset_Min_Max P2_ADCF_Read_Min_Max4 P2_ADCF_Read_Min_Max8	
Use LED	P2_Check_LED, P2_Set_LED	
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config, P2_Event2_Config	

5.5.10 Pro II-Aln-F-4/18 Rev. E

The analog input module Pro II-AIn-F-4/18 Rev. E has 4 Fast ADC of 18 Bit and 4 differential inputs. The inputs are galvanically isolated from each other as well as from other modules.

The inputs are available with the following connectors:

- Pro II-AIn-F-4/18: shielded LEMO female connectors, CAMAC European norm.
- Pro II-AIn-F-4/18-L2: shielded LEMO female connectors, 2-pole, CAMAC European norm.
- Pro II-AIn-F-4/18-D: D-Sub female connector 37-pin.
- Pro II-AIn-F-4/18-B: BNC connectors.

The module Pro II-AIn-F-4/18 Rev. E has input voltage range of $\pm 10V$. The adjustment of gain and offset is made by software. (see chapter 6 "Calibration").

The module can perform a simultaneous conversion on all channels using a sequence control. This disburdens–compared to single measurements with the instruction P2_ADCF–the processor module which only reads and processes the converted measurement values. The conversion can be either triggered periodically with regular time delays or by external event signals.

The module can control an upper and lower limit for each channel separately.

In order to use a channel as single-ended input, connect the input signal to the plus pin and ground to the minus pin.

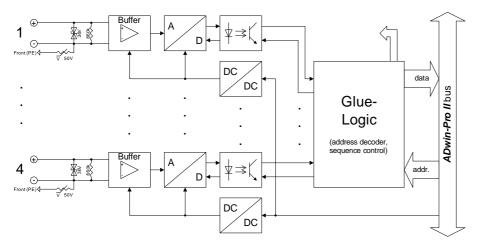
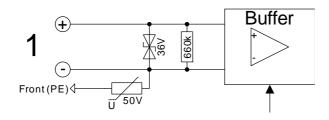
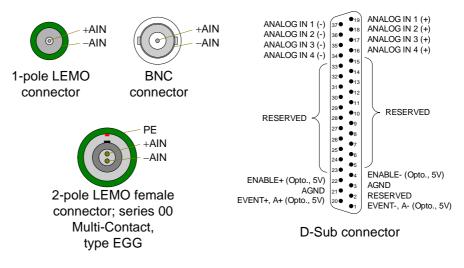
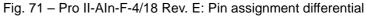


Fig. 68 - Pro II-AIn-F-4/18 Rev. E: Block diagram

As ground connection the enclosure's ground (PE) is available. All analog inputs are galvanically isolated from enclosure's ground.

With module versions -L2 (2-pole Lemo) and -D (D-Sub connector), the enclosure's ground is also available at the shield of the connectors.


Fig. 69 - Pro II-Aln-F-4/18 Rev. E: Input circuitry

Input channels		4 differential, galvanically isolated	
Resolution		18 Bit	
Conversion time		max. 2µs (per ADC)	
Sampling rate		max. 500ksps (per ADC)	
Input band width		0 0.6MHz	
Measurement range		±10V	
Accuracy	INL	max. ±4 LSB	
	DNL	max. ±3 LSB	
Input resistance		660kΩ, ±2%	
Input over-voltage:		±35V	
Offset error		adjustable	
Offset drift		±30ppm/ºC of full scale range	
Connector		4 LEMO female connectors, 1-pole or 4 LEMO female connectors, 2-pole or 37-pin D-Sub female connector or 4 BNC connectors	

Fig. 70 - Pro II-AIn-F-4/18 Rev. E: Specification

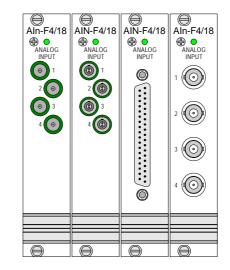


Fig. 72 - Pro II-AIn-F-4/18 Rev. E: Front panels

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains instructions for the following functions:

Function	Instructions
Configure sequence control	P2_ADCF_Mode
Do a single conversion – com- plete or step by step	P2_ADCF, P2_ADCF24 P2_Start_ConvF, P2_Wait_EOCF P2_Read_ADCF, P2_Read_ADCF24
Read several values	P2_Read_ADCF32 P2_Read_ADCF4, P2_Read_ADCF4_24B P2_Read_ADCF4_Packed
Read value and start new con- version	P2_Read_ADC_SConv P2_Read_ADC_SConv24 P2_Read_ADC_SConv32
Synchronize	P2_Sync_All, P2_Sync_Enable P2_Sync_Stat
Control input limits	P2_ADCF_Read_Limit P2_ADCF_Set_Limit
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config, P2_Event2_Config

5.5.11 Pro II-AIn-F-8/18 Rev. E

The analog input module Pro II-AIn-F-8/18 Rev. E has 8 Fast-ADC of 18 Bit and 8 differential inputs. The inputs are galvanically isolated from each other as well as from other modules.

The inputs are available with the following connectors:

- Pro II-AIn-F-8/18: shielded LEMO female connectors, CAMAC European norm.
- Pro II-AIn-F-8/18-L2: shielded LEMO female connectors, 2-pole, CAMAC European norm.
- Pro II-Aln-F-8/18-D: D-Sub female connector 37-pin.
- Pro II-Aln-F-8/18-B: BNC connectors.

The module Pro II-AIn-F-8/18 Rev. E has input voltage range of $\pm 10V$. The adjustment of gain and offset is made by software. (see chapter 6 "Calibration").

The module can perform a simultaneous conversion on all channels using a sequence control. This disburdens–compared to single measurements with the instruction P2_ADCF–the processor module which only reads and processes the converted measurement values. The conversion can be either triggered periodically with regular time delays or by external event signals.

The module can control an upper and lower limit for each channel separately.

In order to use a channel as single-ended input, connect the input signal to the plus pin and ground to the minus pin.

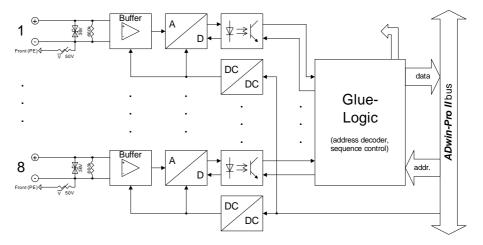


Fig. 73 – Pro II-Aln-F-8/18 Rev. E: Block diagram

As ground connection the enclosure's ground (PE) is available. All analog inputs are galvanically isolated from enclosure's ground.

With module versions -L2 (2-pole Lemo) and -D (D-Sub connector), the enclosure's ground is also available at the shield of the connectors.

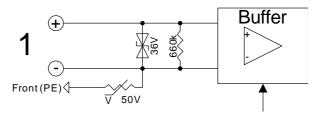
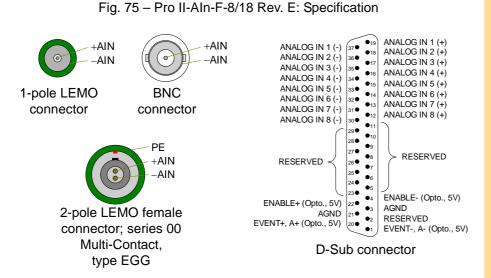



Fig. 74 – Pro II-Aln-F-8/18 Rev. E: Input circuitry

Input channels		8 differential, galvanically isolated	
Resolution		18 Bit	
Conversion time		max. 2µs (per ADC)	
Sampling rate		max. 500ksps (per ADC)	
Input band width		0 0.6MHz	
Measurement	range	±10V	
Accuracy	INL	max. ±4 LSB	
	DNL	max. ±3 LSB	
Input resistance		660kΩ, ±2%	
Input over-voltage		±35V	
Offset error		adjustable	
Offset drift		±30ppm/ºC of full scale range	
Connector		8 LEMO female connectors, 1-pole or 8 LEMO female connectors, 2-pole or 37-pin D-Sub female connector or 8 BNC connectors	

Fig. 76 - Pro II-AIn-F-8/18 Rev. E: Pin assignment differential

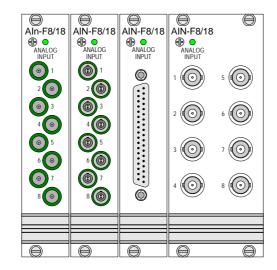


Fig. 77 – Pro II-Aln-F-8/18 Rev. E: Front panels

Programming in ADbasic	The module is comfortably programmed with <i>ADbasic</i> instructions. The instructions are described in <i>ADbasic</i> online help and in the Pro II Software manual.		
	The include file ADwinPro_All.inc contains instructions for the following functions:		
	Function	Instructions	
	Configure sequence control	P2_ADCF_Mode	
	Do a single conversion – com- plete or step by step	P2_ADCF, P2_ADCF24 P2_Start_ConvF, P2_Wait_EOCF P2_Read_ADCF, P2_Read_ADCF24	
	Read several values	P2_Read_ADCF32 P2_Read_ADCF4, P2_Read_ADCF4_24B P2_Read_ADCF4_Packed P2_Read_ADCF8, P2_Read_ADCF8_24B P2_Read_ADCF8_Packed	
	Read value and start new con- version	P2_Read_ADC_SConv P2_Read_ADC_SConv24 P2_Read_ADC_SConv32	
	Synchronize	P2_Sync_All, P2_Sync_Enable P2_Sync_Stat	
	Control input limits	P2_ADCF_Read_Limit P2_ADCF_Set_Limit	
	Use LED	P2_Check_LED, P2_Set_LED	
	Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config, P2_Event2_Config	

5.6 Pro II: Analog Output Modules

This section describes analog output modules for *ADwin-Pro II*. Analog output modules for *ADwin-Pro I* be found in the manual "ADwin-Pro Hardware" from page 66.

Module name	AOut 4/16	AOut 4/16- TiCo	AOut 8/16	AOut 8/16- TiCo	AOut 1/16
Revision	E	E	E	E	E
Number DAC	4	4	8	8	1
Resolution [bit]	16	16	16	16	16
max. settling time [µs]	< 3	< 3	< 3	< 3	0.015
Channels sng. end.	4	4	8	8	1
Output voltage	±10V	±10V	±10V	±10V	±2V
Calibration by software	yes	yes	yes	yes	yes
TiCo processor	_	TiCo1	_	TiCo1	-
page	86	86	89	89	92

5.6.1 Pro II-AOut-4/16 Rev. E

The analog output module Pro II-AOut-4/16 Rev. E has 4 DAC (16 bit) with fixed 1st order low-pass filters (fc = 10MHz).

The module can be ordered in following variants:

	without TiCo pro- cessor	with TiCo processor
shielded LEMO female con- nectors, 1-pole, CAMAC European norm	Pro II-AOut-4/16	Pro II-AOut-4/16-TiCo
shielded LEMO female con- nectors, 2-pole, CAMAC European norm	Pro II-AOut-4/16-L2	Pro II-AOut-4/16-L2- TiCo
D-Sub female connector 37- pin	Pro II-AOut-4/16-D	Pro II-AOut-4/16-D-TiCo
BNC sockets	Pro II-AOut-4/16-B	Pro II-AOut-4/16-B-TiCo

The output voltage range of the DACs is set to $\pm 10V$ bipolar and can't be changed. Offset and gain are adjusted by software (see chapter 6 "Calibration").

Modules with D-Sub female connector have an event input; an event given may be forwarded as trigger signal to the processor module.

TiCo processor

The variants Pro II-AIn-8/18-xxx-TiCo additionally provide a freely programmable *TiCo* processor with 28KiByte data memory and 28KiByte program memory, which has access to all inputs of the module. Find more information about use and programming of the *TiCo* processor in the manual *TiCoBasic*.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

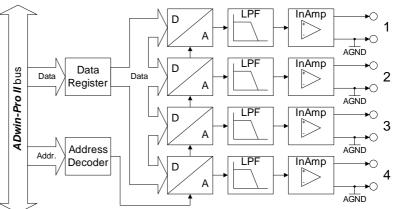
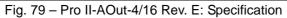
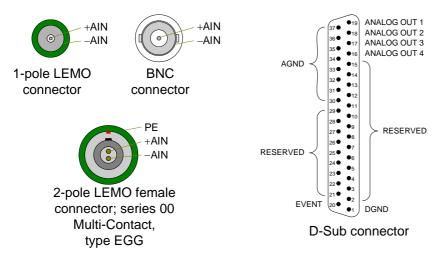


Fig. 78 - Pro II-AOut-4/16 Rev. E: Block diagram


Output channels	4 single-ended
Resolution	16 bit
Settling time to 0.01% FSR	< 3µs
Output voltage	±10V


Fig. 79 – Pro II-AOut-4/16 Rev. E: Specification

stem.

Output curren	t max.	±5mA per channel for optimal function ±35mA technically possible short-circuit-proof
Accuracy	INL	±2 LSB typical
	DNL	±1 LSB typical
Offset error		adjustable
Gain error		adjustable
Offset drift		±10 μV/ºC
TiCo processor, only with Pro II-AIn-8/18-L2-TiCo Rev. E		Processor type: TiCo1 Clock frequency: 50MHz Memory size: 28KiB PM internal, 28KiB DM internal
Connector		4 LEMO female connectors, 1-pole or 4 LEMO female connectors, 2-pole or 37-pin D-Sub female connector or 4 BNC connectors

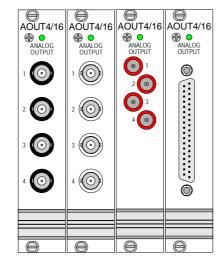


Fig. 81 – Pro II-AOut-4/16 Rev. E: Front covers

Programming		rogrammed with <i>ADbasic</i> instructions. Th <i>Dbasic</i> online help and in the Pro II Softwar		
	The include file ADwinPro_Al functions:	The include file ADwinPro_All.inc contains instructions for the following functions:		
	Function	Instructions		
	Output values	P2_DAC, P2_DAC4, P2_DAC4_Packed		
	Output values step by step	P2_Write_DAC, P2_Write_DAC4 P2_Write_DAC4_Packed P2_Write_DAC32 P2_Start_DAC		
	Synchronize	P2_Sync_All, P2_Sync_Enable P2_Sync_Stat		
	Use LED	P2_Check_LED, P2_Set_LED		
	Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config		
Programming in TiCoBasic		The module can be programmed with <i>TiCoBasic</i> instructions. The instructions are described in <i>TiCoBasic</i> online help.		
	The include file AOut_TiCo. functions:	inc contains instructions for the following		
	Function	Instruction		
	Output values	DAC		
	Output values step by step	Write_DAC,Write_DAC32,Start_DAC		
	Use LED	Check_LED, Set_LED		
Programming TiCo access	instructions are defined in the in	from the ADwin CPU the following <i>ADbasi</i> nclude file ADwinPro_All.inc. The instruc online help and in the <i>TiCoBasic</i> manual.		
	Function	Instructions		
	Data exchange with the <i>TiCo</i> processor via global variables	P2_TDrv_Init		
	Control <i>TiCo</i> processor	P2_TiCo_Reset, P2_TiCo_Start, P2_TiCo_Stop P2_Get_TiCo_Bootloader_ Status P2_Get_TiCo_Status, P2_Workload		
	Control <i>TiCo</i> processes	P2_Process_Status P2_TiCo_Get_Processdelay P2_TiCo_Set_Processdelay P2_TiCo_Start_Process P2_Tico_Stop_Process		

5.6.2 Pro II-AOut-8/16 Rev. E

The analog output module Pro II-AOut-8/16 Rev. E has 8 DAC (16 bit) with fixed 1st order low-pass filters (fc = 10MHz).

The module can be ordered in following variants:

	without TiCo pro- cessor	with TiCo processor
shielded LEMO female con- nectors, 1-pole, CAMAC European norm	Pro II-AOut-8/16	Pro II-AOut-8/16-TiCo
shielded LEMO female con- nectors, 2-pole, CAMAC European norm		Pro II-AOut-8/16-L2- TiCo
D-Sub female connector 37- pin	Pro II-AOut-8/16-D	Pro II-AOut-8/16-D-TiCo
BNC sockets	Pro II-AOut-8/16-B	Pro II-AOut-8/16-B-TiCo

The output voltage range of the DACs is set to $\pm 10V$ bipolar and can't be changed. Offset and gain are adjusted by software (see chapter 6 "Calibration").

Modules with D-Sub female connector have an event input; an event given may be forwarded as trigger signal to the processor module.

The variants Pro II-AIn-8/18-xxx-TiCo additionally provide a freely programmable *TiCo* processor with 28KiByte data memory and 28KiByte program memory, which has access to all inputs of the module. Find more information about use and programming of the *TiCo* processor in the manual *TiCoBasic*.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

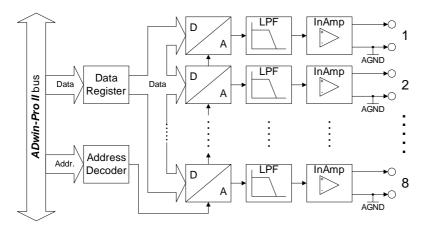


Fig. 82 - Pro II-AOut-8/16 Rev. E: Block diagram

Output channels	8 single-ended
Resolution	16 bit
Settling time to 0.01% FSR	< 3µs
Output voltage	±10V

Fig. 83 – Pro II-AOut-8/16 Rev. E: Specification

TiCo processor

Output currer	it max.	±5mA per channel for optimal function ±35mA technically possible, short-circuit- proof
Accuracy	INL	±2 LSB typical
	DNL	±1 LSB typical
Offset error		adjustable
Gain error		adjustable
Offset drift		±10 µV/ºC
TiCo processor, only with Pro II-AIn-8/18-L2-TiCo Rev. E		Processor type: TiCo1 Clock frequency: 50MHz Memory size: 28KiB PM internal, 28KiB DM internal
Connector		8 LEMO female connectors, 1-pole or 8 LEMO female connectors, 2-pole or 37-pin D-Sub female connector or 8 BNC connectors

Fig. 83 - Pro II-AOut-8/16 Rev. E: Specification

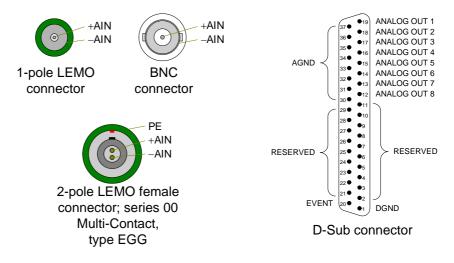


Fig. 84 - Pro II-AOut-8/16 Rev. E: Pin assignment

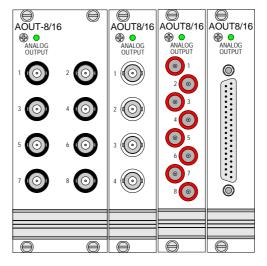


Fig. 85 – Pro II-AOut-8/16 Rev. E: Front covers

The module is comfortably programmed with *ADbasic* instructions. They are described in *ADbasic* online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains instructions for:

Function	Instructions
Output values	P2_DAC, P2_DAC4, P2_DAC4_Packed P2_DAC8, P2_DAC8_Packed
Output values step by step	P2_Write_DAC, P2_Write_DAC4 P2_Write_DAC4_Packed P2_Write_DAC8 P2_Write_DAC8_Packed P2_Write_DAC32 P2_Start_DAC
Synchronize	P2_Sync_All, P2_Sync_Enable P2_Sync_Stat
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config

The module can be programmed with *TiCoBasic* instructions. The instructions are described in *TiCoBasic* online help.

The include file <code>AOut_TiCo.inc</code> contains instructions for the following functions:

Function	Instruction
Output values	DAC
Output values step by step	Write_DAC,Write_DAC32,Start_DAC
Use LED	Check_LED, Set_LED

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Programming in

TiCoBasic

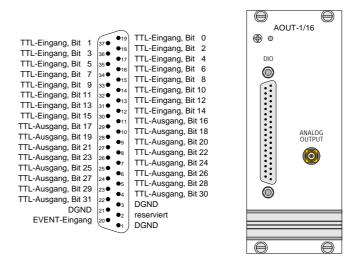
Programming TiCo access

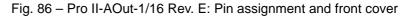
Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full
Control TiCo processor	P2_TiCo_Reset, P2_TiCo_Start,
	P2_TiCo_Stop
	P2_Get_TiCo_Bootloader_
	Status
	P2_Get_TiCo_Status, P2_Workload
Control TiCo processes	P2_Process_Status
	P2_TiCo_Get_Processdelay
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start_Process
	P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.6.3 Pro II-AOut-1/16 Rev. E

The module Pro II-AOut-1/16 Rev. E is equipped with the following hardware:

- 1 analog output with 16 Bit DAC, output rate 50MHz, galvanically isolated.
- Each 16 digital inputs and outputs with TTL levels
- 1 Event input
- TiCo processor with 56 KiB internal memory and 256MiB external DRAM

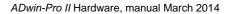

The *TiCo* processor has access to all inpus and outputs of the module, as does the *ADwin* CPU. You find more information about usage and programming of the TiCo processor in the *TiCoBasic* manual.


Analog output

The DAC runs with 50MHz speed. The output voltage range of the DAC is set to $\pm 2V$ bipolar and cannot be changed. The calibration of gain and offset is done via software (see chapter 6 "Calibration").

The DAC output is located in a separate SMB plug and is galvanically isolated from enclosing's ground and from other modules.

Please note: The DAC output has a resistance of 50Ω and must be operated with a 50Ω system. As soon as the output was calibrated, any change to the resistance value–for example by exchanging a cable or a plug–may lead to a strong bias in the output voltage value.


To output DAC values there are 3 variants:

- 1. Single value output
- 2. Continuous output via an output Fifo. The output values can be either refilled regularly or will be repeated in an endless loop.

With each output voltage value, 14 digital outputs can be set either.

3. Output of voltage ramps being defined by DAC start value, DAC end value, and span of time. The combination of consecutive ramps enables the output of curves.

In addition to a voltage ramp, at the start and/or at the end of the ramp TTL signals can be set at the 16 digital outputs.

The 3 output variants can only be used one after the other but not in parallel. If you change to a different output variant there will in any case be a time delay until the next voltage value is output.

Digital Inputs/Outputs

16 input and 16 outputs with TTL levels are available on a 37-pin D-Sub female connector, pin assignment see above. The channel direction cannot be changed.

The module can automatically monitor the edges of input channels which is performed with a frequency of 100MHz. With every change the current input levels are saved together with a time stamp in a FIFO; up to 511 of those value pairs (input level and time stamp) can be stored. The FIFO data can be read and processed.

In addition, one can query whether a positive or negative edge has occurred at the input channels.

The FIFO can be used either for edge control of inputs or for output of level patterns at the outputs.

Via the EVENT input a trigger signal can start an externally triggered *ADbasic* process which is processed immediately and completely (see *ADbasic* manual).

TiCo processor

The module provides the freely programmable *TiCo* processor with 28kiB program memory, 28KiB data memory, and 256MiB external DRAM memory. The internal memory serves as data and program memory. You program the *TiCo* processor with *TiCoBasic*.

The *TiCo* processor has access to all analog and digital input and output channels, as does the *ADwin* CPU. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

Analog Output				
Output channels		1 single ended		
Resolution		16 Bit		
Settling time to	0.01% FSR	15ns		
Output voltage	e range	±2V		
Maximum outp	out current	±40mA at 50Ω load short-term short-circuit proof		
Accuracy	INL	±8 LSB max.		
	DNL	±1 LSB typically		
Offset error		adjustable		
Gain error		adjustable		
Offset drift		±10 μV/°Κ		
Digital Inputs	/Outputs			
Digital inputs/outputs		16 inputs and 16 outputs with TTL logic		
Fig. 97 Dro II AQuit 4/40 Days Ex Cracification				

Technical Specification

Fig. 87 - Pro II-AOut-1/16 Rev. E: Specification

Pull down resistor	10kΩ
V _{IH}	min. 2V
V _{IL}	max. 0.8V
I _{IH}	max. 500µA
IIL	max. 10µA
Voltage range	-0,5V +5,5V
Output current	max. ±24mA per channel via V _{CC} or GND, max. ±70mA per block of 8 channels via VCC or GND
Event input	TTL logic
General	
Input / output FIFO	Size: 511 value pairs Frequency: 100MHz
TiCo	Prozessor type: TiCo1 Clock rate: 50MHz Memory size: 28kiB PM internal, 28kiB DM internal, 256MiByte DRAM external
Connector	37-pin D-Sub female connector, SMB plug

Fig. 87 – Pro II-AOut-1/16 Rev. E: Specification

Programming

Programming in ADbasic

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and Pro II Software manual.

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Function	Instructions
Analog Output	
Output single value	P2_DAC, P2_DAC1_DIO
Output value step by step	P2_Write_DAC, P2_Start_DAC
Output DAC value and digital pattern via output Fifo	P2_Digout_Fifo_Clear P2_Digout_Fifo_Read_Timer P2_Digout_Fifo_Empty P2_Dig_Fifo_Mode P2_Digout_Fifo_Start P2_Digout_Fifo_Enable P2_Digout_Fifo_Write
Ramp mode	P2_DAC_Ramp_Write P2_DAC_Ramp_Status P2_DAC_Ramp_Buffer_Free P2_DAC_Ramp_Stop
Digital I/Os Query input signalst	P2_Digin_Long
Monitor edges of input chan- nels	
Set and read back output signals	P2_Digout, P2_Digout_Long P2_Get_Digout_Long P2_Digout_Bits P2_Digout_Set, P2_Digout_Reset

Function	Instructions
Use latch register	P2_Dig_Latch
	P2_Dig_Read_Latch
	P2_Dig_Write_Latch
General	
Start actions synchonously	P2_Sync_All, P2_Sync_Enable
	P2_Sync_Stat
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read
	P2_Event_Config

The module can be programmed with *TiCoBasic* instructions. The instructions are described in *TiCoBasic* online help.

Programming in TiCoBasic

The include file $\tt AOUT1_TiCo.inc$ contains instructions for the following functions:

Function	Instructions
Analog Output	
Output single value	DAC, DAC1_DIO
Output value step by step	Write_DAC, Start_DAC
Output DAC value and digital	Digout_Fifo_Clear
pattern via output Fifo	Digout_Fifo_Read_Timer
	Digout_Fifo_Empty
	Dig_Fifo_Mode
	Digout_Fifo_Start
	Digout_Fifo_Enable
	Digout_Fifo_Write
Ramp mode	DAC_Ramp_Write
	DAC_Ramp_Status
	DAC_Ramp_Buffer_Free
	DAC_Ramp_Stop
Digital I/Os	
Query input signalst	Digin_Long
Monitor edges of input chan-	Digin_Fifo_Clear
nels	Digin_Fifo_Read_Timer
	Digin_Fifo_Full
	Digin_Fifo_Enable
Set and read back output sig-	Digout, Digout_Long
nals	Get_Digout_Long
	Digout_Bits
	Digout_Set, Digout_Reset
Use latch register	Dig_Latch
	Dig_Read_Latch
	Dig_Write_Latch
General	
Use LED	Check_LED, Set_LED
Use interrupt and event inputs	Event_Enable, Event_Read
	Event_Config

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Programming TiCo access

Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full
Control TiCo processor	P2_TiCo_Reset, P2_TiCo_Start,
	P2_TiCo_Stop
	P2_Get_TiCo_Bootloader_
	Status
	P2_Get_TiCo_Status, P2_Workload
Control TiCo processes	P2_Process_Status
	P2_TiCo_Get_Processdelay
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start_Process
	P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.7 Pro II: Digital-I/O Modules

Digital I/O Modules

Module	Rev.	Туре	Chan- nels	Input Voli [V		High Level [mA]	Isolation [V]	Page
DIO-32	E	TTL input / output	32	5	TTL	-	-	98
DIO-32-TiCo	E	TTL input / output, with TiCo processor	32	5	TTL	_	_	100
DIO-32-TiCo2	E	TTL input / output, with TiCo2 processor	32	5	TTL	_	_	104
OPT-16	E	Optocouple input	16	5, 12, 24	DC	_	42	108
OPT-32-24V	Е	Optocouple input	32	24	DC	_	42	110
REL-16	Е	Relay output	16	max. 30	AC / DC	500	42	112
TRA-16	Е	Transistor output	16	530	DC	200	42	114
PWM-16	Е	PWM output signal	16	5	TTL	_	-	116
PWM-16-I	Е	PWM output signal	16	530	DC	100	42	116
Comp-16	E	Digital inputs with comparators	16	-232	DC	—	-	118

Counter Modules

		Chan-		Counters		Input volt	age. U _{In}	Isolation	
Module	Rev.	nels	No.	Type ^a	Resol. [Bit]	[V]	Туре	[V]	Page
CNT-T	E	4	1	U	32	5	TTL	-	122
CNT-I	E	4	1	U	32	5, 12, 24	DC	42	122
CNT-D	E	4 + 2 SSI	1	U	32	5 diff.	RS422/ RS485	-	122

a. U: Universal counter = UD + I + PWM

5.7.1 Pro II-DIO-32 Rev. E

The digital input/output module Pro II-DIO-32 Rev. E provides 32 programmable digital input and output channels at TTL levels. The channels can be configured as blocks of 8 bits as inputs or outputs by *ADbasic* instructions. The channels are configured as inputs after power up.

The module can automatically monitor the edges of input channels which is performed with a frequency of 100MHz. With every change the current input levels are saved together with a time stamp in a FIFO; up to 511 of those value pairs (input level and time stamp) can be stored. The FIFO data can be read and processed.

In addition, one can query whether a positive or negative edge has occurred at the input channels.

The variant Pro II-DIO-32-TiCo Rev. E provides in addition the freely programmable *TiCo* processor and may output levels at defined points in time to digital outputs as stand-alone. Find more on page 100.

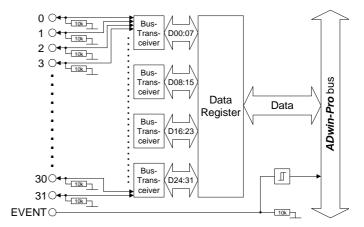


Fig. 88 - Pro II-DIO-32 Rev. E: Block diagram

DIG I/O, BIT 1 DIG I/O, BIT 3 DIG I/O, BIT 5 DIG I/O, BIT 7 DIG I/O, BIT 7 DIG I/O, BIT 11 DIG I/O, BIT 15 DIG I/O, BIT 15 DIG I/O, BIT 15 DIG I/O, BIT 23 DIG I/O, BIT 23 DIG I/O, BIT 25 DIG I/O, BIT 27 DIG I/O, BIT 21 DIG I/O, BIT 21 DIG I/O, BIT 31 DGND	37 •19 366 •17 35 •16 33 •13 33 •14 33 •12 30 •12 90 •11 28 •9 27 •8 26 •8 25 •6 23 •4 25 •6 23 •4 21 •2 20 •1	DIG I/O, BIT 0 DIG I/O, BIT 2 DIG I/O, BIT 4 DIG I/O, BIT 6 DIG I/O, BIT 6 DIG I/O, BIT 8 DIG I/O, BIT 10 DIG I/O, BIT 12 DIG I/O, BIT 14 DIG I/O, BIT 14 DIG I/O, BIT 18 DIG I/O, BIT 20 DIG I/O, BIT 20 DIG I/O, BIT 22 DIG I/O, BIT 22 DIG I/O, BIT 24 DIG I/O, BIT 24 DIG I/O, BIT 28 DIG I/O, BIT 28 DIG I/O, BIT 28 DIG I/O, BIT 30 DGND +5V, <100mA (fused) DGND	DIO 32 PIGITAL IO TIL COMP.
			Θ

Fig. 89 - Pro II-DIO-32 Rev. E: Front panel and Pin assignment

Digital inputs	TTL logic
Input/output channels	32; programmable via software as inputs/outputs in blocks of
	8
Pull down resistor	10kΩ

Fig. 90 – Pro II-DIO-32 Rev. E: Specification

V _{IH}	min. 2V		
V _{IL}	max. 0.8V		
I _{IH}	max. 1µA		
IIL	max. 0.01 mA		
Voltage range	-0.5V +5.5V		
Output current	max. \pm 35mA per channel, max. \pm 70mA per block (8 channels) via V _{CC} or GND		
Event input	TTL logic		
Power up status	All channels as inputs		
Connector	37-pin D-Sub female connector		
Fig. 00 Pro II DIO 22 Poy E: Specification			

Fig. 90 – Pro II-DIO-32 Rev. E: Specification

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and Pro II Software manual.

Programming in ADbasic

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Function	Instructions
Configure input/outputs	P2_DigProg
Query input signals	P2_Digin_Long
Use latch register	P2_Dig_Latch P2_Dig_Read_Latch P2_Dig_Write_Latch P2_Sync_All
Monitor edges of input chan- nels	P2_Digin_FIF0_Enable P2_Digin_FIF0_Read P2_Digin_FIF0_Read_Timer P2_Digin_FIF0_Clear P2_Digin_FIF0_Full
Query edges of input channels	P2_Digin_Edge
Set and read back output signals	P2_Digout, P2_Digout_Bits P2_Digout_Long P2_Get_Digout_Long
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config

5.7.2 Pro II-DIO-32-TiCo Rev. E

The digital input/output module Pro II-DIO-32-TiCo Rev. E provides 32 programmable digital input and output channels at TTL levels. The channels can be configured as blocks of 8 bits as inputs or outputs by *ADbasic* instructions. The channels are configured as inputs after power up.

The module can automatically monitor the edges of input channels which is performed with a frequency of 100MHz. With every change the current input levels are saved together with a time stamp in a FIFO; up to 511 of those value pairs (input level and time stamp) can be stored. The FIFO data can be read and processed.

In addition, one can query whether a positive or negative edge has occurred at the input channels.

Different from variant Pro II-DIO-32 Rev. E the module provides in addition the freely programmable *TiCo* processor with 28 KiB program memory, 28 KiB data memory, and 256 MiB external memory. The *TiCo* processor has access to all digital input and output channels. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

From revision E 03 the module may output levels at defined points in time to digital outputs as stand-alone. A FIFO serves as buffer where the user-defined level patterns and points in time are stored.

The Fifo can either be used for edge control of the inputs or for level output at the outputs.

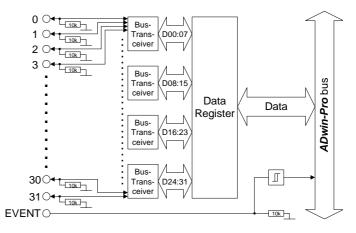
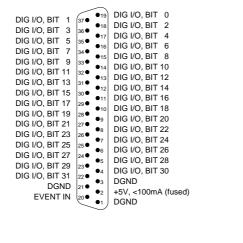
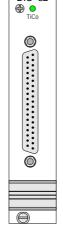




Fig. 91 – Pro II-DIO-32-TiCo Rev. E: Block diagram

DIO 32

Fig. 92 - Pro II-DIO-32-TiCo Rev. E: Front panel and Pin assignment

TTL logic
32; programmable via software as inputs/outputs in blocks of 8
10kΩ
min. 2V
max. 0.8V
max. 1µA
max. 0.01 mA
-0.5V +5.5V
max. ±35mA per channel, max. ±70mA per block (8 channels) via V _{CC} or GND
TTL logic
All channels as inputs
Size: 511 value pairs Frequency: 100MHz
Prozessor type: TiCo1 Clock rate: 50MHz Memory size: 28kiB PM internal, 28kiB DM internal, 256MiByte DRAM external
37-pin D-Sub female connector

Fig. 93 – Pro II-DIO-32-TiCo Rev. E: Specification

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and Pro II Software manual.

Programming in ADbasic

The include file ADwinPro_All.inc contains instructions for the following functions:

Function	Instructions
Configure input/outputs	P2_DigProg
Query input signals	P2_Digin_Long
Use latch register	P2_Dig_Latch P2_Dig_Read_Latch P2_Dig_Write_Latch P2_Sync_All

Pro II: Digital-I/O Modules Pro II-DIO-32-TiCo Rev. E

	Function	Instructions		
	Monitor edges of input chan- nels	P2_Digin_FIF0_Enable P2_Digin_FIF0_Read P2_Digin_FIF0_Read_Timer P2_Digin_FIF0_Clear P2_Digin_FIF0_Full		
	Query edges of input channels	P2_Digin_Edge		
	Set and read back output signals	P2_Digout, P2_Digout_Bits P2_Digout_Set, P2_Digout_Reset P2_Digout_Long P2_Get_Digout_Long		
	Set output signals automati- cally	P2_Digout_FIF0_Clear P2_Digout_FIF0_Empty P2_Digout_FIF0_Enable P2_Digout_FIF0_Read_Timer P2_Digout_FIF0_Start P2_Digout_FIF0_Write		
Programming in TiCoBasic	Use LED	P2_Check_LED, P2_Set_LED		
	Use interrupt and event inputs			
	are described in <i>TiCoBasic</i> online help. The include file DIO32TiCo.inc contains instructions for the following functions:			
	Function	Instructions		
	Configure input/outputs	DigProg		
	Query input signals	DigProg Digin_Long		
	· ·	DigProg Digin_Long		
	Query input signals Monitor edges of input chan-	DigProg Digin_Long Digin_FIFO_Enable Digin_FIFO_Read Digin_FIFO_Read_Timer Digin_FIFO_Clear Digin_FIFO_Full		
	Query input signals Monitor edges of input chan- nels	DigProg Digin_Long Digin_FIFO_Enable Digin_FIFO_Read Digin_FIFO_Read_Timer Digin_FIFO_Clear Digin_FIFO_Full Digin_Edge		
	Query input signals Monitor edges of input chan- nels Query edges of input channels Set and read back output sig-	DigProg Digin_Long Digin_FIFO_Enable Digin_FIFO_Read Digin_FIFO_Read_Timer Digin_FIFO_Clear Digin_FIFO_Clear Digin_Edge Digout_Digout_Bits Digout_Set, Digout_Reset Digout_Long Get_Digout_Long		
	Query input signals Monitor edges of input chan- nels Query edges of input channels Set and read back output sig- nals Set output signals automati-	DigProg Digin_Long Digin_FIFO_Enable Digin_FIFO_Read Digin_FIFO_Read_Timer Digin_FIFO_Clear Digin_FIFO_Clear Digin_Edge Digout,Digout_Bits Digout_Set,Digout_Reset Digout_Set,Digout_Reset Digout_Long Get_Digout_Long Digout_FIFO_Clear Digout_FIFO_Enable Digout_FIFO_Enable Digout_FIFO_Read_Timer Digout_FIFO_Start		

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Programming TiCo access

Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full
Control TiCo processor	P2_TiCo_Reset, P2_TiCo_Start,
	P2_TiCo_Stop
	P2_Get_TiCo_Bootloader_
	Status
	P2_Get_TiCo_Status, P2_Workload
Control TiCo processes	P2_Process_Status
	P2_TiCo_Get_Processdelay
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start_Process
	P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.7.3 Pro II-DIO-32-TiCo2 Rev. E

The digital input/output module Pro II-DIO-32-TiCo2 Rev. E provides 32 programmable digital input and output channels at selectable voltage levels. The channels can be configured as blocks of 8 bits as inputs or outputs by *ADbasic* instructions. The channels are configured as inputs after power up.

The nominal voltage level of the digital channels can be set in the range of 1.6V ... 4.7V for groups of 8 channels per software. The table shows typical voltage levels with the appropriate thresholds and output currents.

voltage level	V _{IL max}	V _{IH min}	I _{OL}
1.65V	0.6V	1.1V	4mA
2.5V	0.7V	1.7V	8mA
3.3V	0.8V	2.0V	24mA
4.7V	1.4V	3.3V	32mA

Abb. 94 – Pro II-DIO-32-TiCo2 Rev. E: Typical voltage levels

The voltage level of the event input is not adjustable und operates with TTL logic.

The module can automatically monitor the edges of input channels which is performed with a frequency of 200MHz. With every change the current input levels are saved together with a time stamp in a FIFO; up to 2048 of those value pairs (input level and time stamp) can be stored. The FIFO data can be read and processed.

In addition, one can query whether a positive or negative edge has occurred at the input channels.

Different from variant Pro II-DIO-32 Rev. E the module additionally provides the freely programmable *TiCo* processor (type TiCo2) with 128KiB program memory and 512KiB data memory. The *TiCo* processor has access to all digital input and output channels. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

The module may output levels at defined points in time to digital outputs as stand-alone. A FIFO serves as buffer where the user-defined level patterns and points in time are stored, maximum 2048 value pairs. The point of time the output is effected can be set with a precision of 5ns.

The FIFO can be used either for edge control of inputs or for output of level patterns at the outputs.

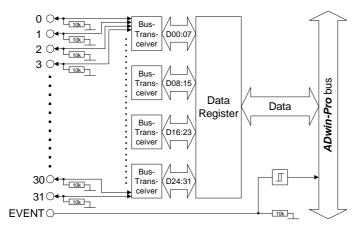


Fig. 95 - Pro II-DIO-32-TiCo2 Rev. E: Block diagram

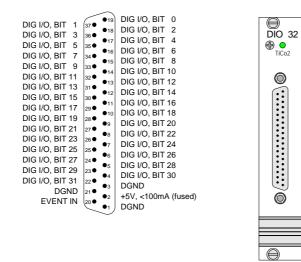


Fig. 96 - Pro II-DIO-32-TiCo2 Rev. E: Front panel and Pin assignment

Connector	37-pin D-Sub female connector
TiCo	Prozessor type: TiCo2 Clock rate: 100MHz Memory size: 128kiB PM internal, 512KiB DM internal
Input / output FIFO	Size: 2048 value pairs Frequency: 200MHz
Power up status	All channels as inputs
Event input	TTL logic
Output current	max. \pm 35mA per channel, max. \pm 70mA per block (8 channels) via V _{CC} or GND
Voltage range	-0.5V +5.5V
	with V_{cc} = set voltage level
Voltage thresholds	V _{IL max} : 0.3×V _{cc} ; V _{IH min} : 0.7×V _{cc}
Pull down resistor	10kΩ
Input/output channels	32; programmable via software as inputs/outputs in blocks of 8

Fig. 97 - Pro II-DIO-32-TiCo2 Rev. E: Specification

Programming in ADbasic		The module is comfortably programmed with <i>ADbasic</i> instructions. The instructions are described in <i>ADbasic</i> online help and Pro II Software manual		
	The include file ADwinPro_All.inc contains instructions for the followin functions:			
	Function	Instructions		
	Configure input/outputs	P2_DigProg P2_DigProg_Set_IO_Level		
	Query input signals	P2_Digin_Long		
	Use latch register	P2_Dig_Latch P2_Dig_Read_Latch P2_Dig_Write_Latch P2_Sync_All		
	Monitor edges of input chan- nels	P2_Digin_FIF0_Enable P2_Digin_FIF0_Read P2_Digin_FIF0_Read_Timer P2_Digin_FIF0_Clear P2_Digin_FIF0_Full		
	Query edges of input channels	P2_Digin_Edge		
	Set and read back output sig- nals	P2_Digout, P2_Digout_Bits P2_Digout_Long P2_Get_Digout_Long		
	Set output signals automati- cally			
	Use LED	P2_Check_LED, P2_Set_LED		
	Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config		
Programming in TiCoBasic	The module can be programmed with <i>TiCoBasic</i> instructions. The instruction are described in <i>TiCoBasic</i> online help.			
	The include file DIO32TiCo. functions:	inc contains instructions for the following		
	Function	Instructions		
Qu	Configure input/outputs	DigProg DigProg_Set_IO_Level		
	Query input signals	Digin_Long		
	Monitor edges of input chan- nels	Digin_FIFO_Enable Digin_FIFO_Read Digin_FIFO_Read_Timer Digin_FIFO_Clear Digin_FIFO_Full		
	Query edges of input channels	Digin_Edge		
	Set and read back output sig- nals	Digout, Digout_Bits Digout_Set, Digout_Reset Digout_Long		

Function	Instructions
Set output signals automati- cally	Digout_FIFO_Empty
	Digout_FIFO_Enable Digout_FIFO_Read_Timer
	Digout_FIFO_Start Digout_FIFO_Write
Use LED	Check_LED, Set_LED
Use interrupt and event inputs	Event_Enable, Trigger_Event Event_Config

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Function	Instructions
Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full
Control TiCo processor	P2_TiCo_Reset, P2_TiCo_Start,
	P2_TiCo_Stop
	P2_Get_TiCo_Bootloader_
	Status
	P2_Get_TiCo_Status, P2_Workload
Control TiCo processes	P2_Process_Status
	P2_TiCo_Get_Processdelay
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start_Process
	P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

Programming TiCo access

5.7.4 Pro II-OPT-16 Rev. E

The input module Pro II-OPT-16 Rev. E provides 16 channels of optically isolated digital inputs. The input voltage range can be set by jumpers (5V, 12V, 24V). The default setting of the input voltage range is 24V. The switching time of only 100ns allows the sampling of high-speed digital inputs.

The module can automatically monitor the edges of input channels which is performed with a frequency of 100MHz. With every change the current input levels are saved together with a time stamp in a FIFO; up to 511 of those value pairs (input level and time stamp) can be stored. The FIFO data can be read and processed.

In addition, one can query whether a positive or negative edge has occurred at the input channels.

Each channel is optically isolated from the system circuitry and from the other inputs. The event-input is optically isolated from the system as well.

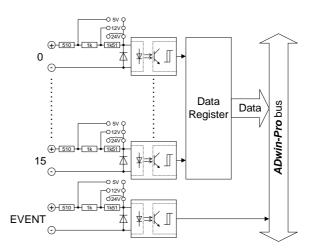


Fig. 98 - Pro II-OPT-16 Rev. E: Block diagram

Fig. 99 - Pro II-OPT-16 Rev. E: Pin assignment

Pro II: Digital-I/O Modules Pro II-OPT-16 Rev. E

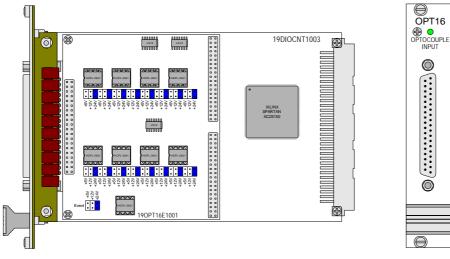


Fig. 100 - Pro II-OPT-16 Rev. E: Board and front panel

Input channels	16		
Event inputs	1		
Input current	typ. 3.5mA / max. 7.5mA		
Input voltage range (selectable via jumpers)	05V	012V	024V
Switching threshold for 0-low	00.8V	01.6V	03.2V
Switching threshold for 1-high	4.55V	1012V	2024V
Input over-voltage	-5V 8V	-5V 16V	-5V 30V
Switching time	100ns		
Input / output FIFO	Size: 511 value pairs Frequency: 100MHz		
Isolation	42V channel-channel / channel-GND		
Connector	37-pin D-Su	b female con	nector

Fig. 101 – Pro II-OPT-16 Rev. E: Specification

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Function	Instructions
Query input signals	P2_Digin_Edge P2_Digin_Long
Use latch register	P2_Dig_Latch, P2_Dig_Read_Latch P2_Sync_All
Monitor edges of input chan- nels	P2_Digin_FIF0_Enable P2_Digin_FIF0_Read P2_Digin_FIF0_Read_Timer P2_Digin_FIF0_Clear P2_Digin_FIF0_Full
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config

Programming

5.7.5 Pro II-OPT-32-24V Rev. E

The input module Pro II-OPT-32-24V Rev. E provides 32 channels of optically isolated digital inputs.

The input voltage range is fixed to 24V which is also true for the event input. The switching time of only 100ns allows the sampling of high-speed digital inputs.

The module can automatically monitor the edges of input channels which is performed with a frequency of 100MHz. With every change the current input levels are saved together with a time stamp in a FIFO; up to 511 of those value pairs (input level and time stamp) can be stored. The FIFO data can be read and processed.

In addition, one can query whether a positive or negative edge has occurred at the input channels.

Each channel is optically isolated from the system circuitry and from the other inputs. The event-input is optically isolated from the system as well.

The channels are single ended and share the same ground potential (ext. GND) which has to be provided on the D-Sub connector.

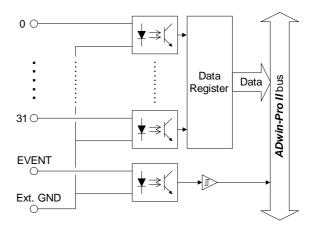


Fig. 102 - Pro II-OPT-32-24V Rev. E: Block diagram

\sim

Fig. 103 - Pro II-OPT-32-24V Rev. E: Pin assignment and front panel

Input channels	32 single ended
Event inputs	1
Input current	typ. 3.5mA / max. 7.5mA
Input voltage range (ordering option)	024V
Switching threshold for 0-low	03.2V
Switching threshold for 1-high	2024V
Input over-voltage	-5V 30V
Switching time	100ns
Input / output FIFO	Size: 511 value pairs Frequency: 100MHz
Isolation	42V channel-channel / channel-GND
Connector	37-pin D-Sub female connector

Fig. 104 - Pro II-OPT-32-24V Rev. E: Specification

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

Programming

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Function	Instructions
Query input signals	P2_Digin_Edge P2_Digin_Long
Use latch register	P2_Dig_Latch, P2_Dig_Read_Latch P2_Sync_All
Monitor edges of input chan- nels	P2_Digin_FIF0_Enable P2_Digin_FIF0_Read P2_Digin_FIF0_Read_Timer P2_Digin_FIF0_Clear P2_Digin_FIF0_Full
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config

The instructions are described in the *ADbasic* online help and in the Pro Software manual.

5.7.6 Pro II-REL-16 Rev. E

The Pro II-REL-16 Rev. E output module provides 16 isolated relay outputs. Each channel is isolated from system circuitry and other output channels. The event-output is optically isolated from the system circuitry.

The module is equipped with normally open contacts, as an option also normally closed contacts are available.

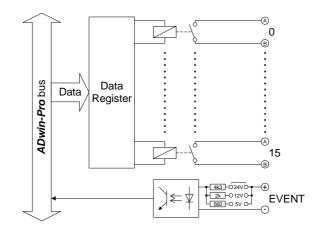


Fig. 105 - Pro II-REL-16 Rev. E: Block diagram

Fig. 106 - Pro II-REL-16 Rev. E: Pin assignment

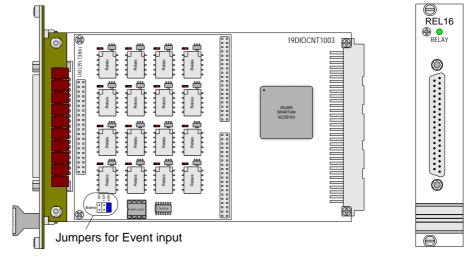


Fig. 107 – Pro II-REL-16 Rev. E: Board and front panel

	1
Output channels	16
Switch voltage	30V AC/DC Maximum
Switch current	max. 500mA per channel
Contact	1 per channel, normally open (optional: normally closed)
Operate time	4ms
Release time	3ms
Bounce time	2ms
Event inputs	1
Isolation	42V channel-channel / chan- nel-GND
Event input voltage	5V, 12V, 24V (selectable via jumpers)
Power up status	low (normally open contact: open / normally closed contact: closed)
Connector	37-pin D-Sub female connector

Fig. 108 – Pro II-REL-16 Rev. E: Specification

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

Programming

The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Function	Instructions
Set and read back output sig- nals	P2_Digout, P2_Digout_Long P2_Digout_Bits P2_Get_Digout_Long
Use latch register	P2_Dig_Latch, P2_Dig_Write_Latch P2_Sync_All
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config

5.7.7 Pro II-TRA-16 Rev. E

The output module Pro II-TRA-16 Rev. E provides 16 channels of isolated transistor outputs. There are 2 module variants:

- Pro II-TRA-16 Rev. E: The outputs switch to V_{CC}.
- Pro II-TRA-16-G Rev. E: The outputs switch to ground.

The switching voltage V_{CC} has to be provided by an external power supply. The channels as well as the event-input are optically isolated from system circuitry.

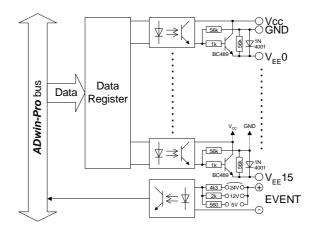


Fig. 109 - Pro II-TRA-16 Rev. E: Block diagram

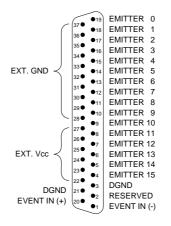
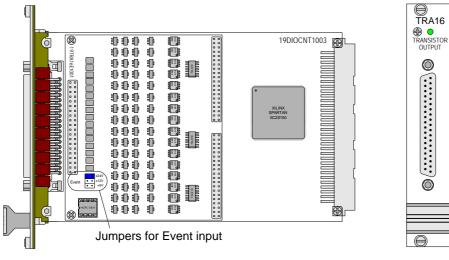



Fig. 110 – Pro II-TRA-16 Rev. E: Pin assignment

Pro II: Digital-I/O Modules Pro II-TRA-16 Rev. E

Output channels	16			
Switching voltage V _{CC}	530V DC with external power supply			
Switching current	Pro II-TRA-16: 200mA max. per channel Pro II-TRA-16-G: 100mA max. per channel			
Voltage drop	0.5V			
Switching time	2.5µs			
Event input	1			
Isolation	42V channel-channel / channel-GND			
Event input voltage	5V, 12V, 24V (selectable via jumpers)			
Power up status	low (GND external)			
Connector	37-pin D-Sub female connector			
Fig. 112 Pro II TPA 16 Poy E: Specification				

Fig. 112 – Pro II-TRA-16 Rev. E: Specification

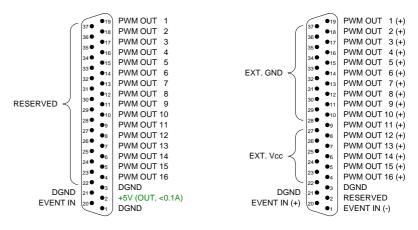
The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

Programming

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

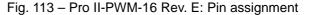
Function	Instructions
Set and read back output sig- nals	P2_Digout, P2_Digout_Long P2_Digout_Bits P2_Get_Digout_Long
Use latch register	P2_Dig_Latch, P2_Dig_Write_Latch P2_Sync_All
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read P2_Event_Config

5.7.8 Pro II-PWM-16 Rev. E


The output module Pro II-PWM-16 Rev. E generates pulse width modulated signals (PWM signals) at 16 outputs. Each (PWM) signal can be configured individually via software; that means, they can be configured separately.

The module is available as version Pro II-PWM-16-I Rev. E, too. On this module, the outputs are optically isolated against the system circuit and against each other. The event input, too, is optically isolated from the system circuit.

The output signals are clocked with a reference clock speed of 100MHz.


The lowest output frequency is about 0.6Hz.

The highest output frequency where the duty cycle can be still defined in 1%-steps, is 1000kHz.

Pro II-PWM-16 Rev. E

Pro II-PWM-16-I Rev. E

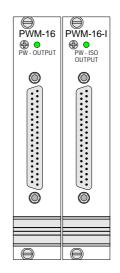


Fig. 114 - Pro II-PWM-16-I Rev. E: Front panels

Output channels	16 PWM channels
Outputs	TTL
Counter / register width	32 bit
Reference clock	100MHz
Event input	1 input, positive TTL
Connector	37-pin D-Sub female connector

Fig. 115 – Pro II-PWM-16 Rev. E: Spezifikation

Pro II-PWM-16 Rev. E				
V _{OH}	2.4V min.			
V _{OL}	0.8V max.			
Output current	5mA per channel max.			
Isolation	No (see page 116)			
Pro II-PWM-16-I Rev. E				
Output voltage	530V DC via external power supply			
Output current	100mA max. per channel			
Voltage drop	0.5V max.			
Switching time	without load: 3µs with load: 1…2µs			
Event input voltage	5V, 12V, 24V (selectable via jumpers)			
Isolation	42V channel-channel / chan- nel-GND			

Fig. 115 - Pro II-PWM-16 Rev. E: Spezifikation

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains instructions for the following functions:

Function	Instructions
Initialize module	P2_PWM_Init
	P2_PWM_Standby_Value
	P2_PWM_Enable
	P2_PWM_Reset
Output and read back PWM signals	P2_PWM_Write_Latch
	P2_PWM_Latch, P2_Sync_All
	P2_PWM_Get_Status
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable
	P2_Event_Config
	P2_Event_Read

Programming

5.7.9 Pro II-Comp-16 Rev. E

The digital input module Pro II-Comp-16 Rev. E provides 16 channels with each a comparator. Incoming signals are compared to an analog threshold which is set via software. Depending on whether the signal exceeds or falls below the threshold an appropriate bit is set to 1 or 0.

In addition the following features are available: symmetrical hysteresis around the threshold, holding of comparator values, a free definable hysteresis (by use of 2 channels with different thresholds) and filtering of spikes.

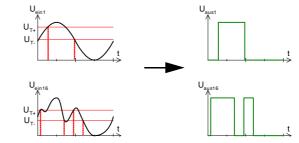


Abb. 116 - Pro II-Comp-16 Rev. E: Comparator principle with hysteresis

The input voltage range and and the setting range for the threshold is -1 V \ldots +30 V.

You set the the threshold digitally via software; from this, a DAC creates an analog signal with 16 bit resolution to be compared with the comparator. On the module there are 4 DAC, so each4 channels work with the same threshold. The aissgnment of DAC to channels is as follows:

DAC	Channels
1	1, 3, 5, 7
2	2, 4, 6, 8
3	9, 11, 13, 15
4	10, 12, 14, 16

The comparators run with 50MHz.

The module can automatically monitor the edges of input channels (= signals after comparators) which is performed with a frequency of 100MHz. A positive edge therefore means exceeding, a negative edge falling below the threshold. With every change the current level status are saved together with a time stamp in a FIFO; up to 511 of those value pairs (level status and time stamp) can be stored. The FIFO data can be read and processed.

The following features can be enabled additionally: Holding a comparator value, setting a (standard) hysteresis around a threshold, and setting a free hysteresis by use of 2 channels with different thresholds.

Holding a comparator value

As soon as an incoming analog value reaches the threshold, the comparator is disabled for a defined hold time and enabled again afterwards. The hold time can be set to the following values: 1μ s, 10μ s, or 100μ s.

You can set comparator hold for groups of 4 channels (1...4, 5...8, 9...12, 13...16), but not for single channels. Comparator hold and standard hysteresis cannot be combined.

Edge detection

Additional features

Standard hysteresis

The hysteresis refers to the set threshold. The channel bit is set to 1 if the threshold plus hysteresis is exceeded, and is reset to 0 if the signal falls below the threshold minus hysteresis. The hysteresis can be set to the following values: ± 17 mV, ± 33 mV, ± 55 mV, or ± 100 mV.

You can the hysteresis for groups of 4 channels (1...4, 5...8, 9...12, 13...16), but not for a single channel. Comparator hold and standard hysteresis cannot be combined.

Free hysteresis

To use other, especially a greater hysteresis than standard hysteresis, you have to combine a channel pair (1,2 / ... / 15, 16). The signal must be connected to both channels. The comparator bit of the channel pair is set to 1, if the signal exceeds the thresholds of both channels. Accordingly, the comparator bit is set to 0 if the signal falls below the thresholds of both channels.

The channels being used for free hysteresis can additionally be combined with comparator hold or standard hysteresis.

Comparator filter

You can enable a filter which is located behind the comparators, in order to suppress single spikes. The number of spikes should be small compared to the pulse width of the signal.

The filter settings apply to all channels. Each channel has its own filter. After power-up all filters are disabled.

The filter duration can be set in a range from 20ns to 1.31ms and should be somewhat longer than the expected width of spikes.

The filter duration determines how long a comparator output must be 1 to set the channel bit to 1. The timing filter increments in clocks of 20ns until the target value is reached; if the comparator output is 0 the counter is decremented. In order to fall below a threshold, the same procedure is processed in reverse.

The filter can be combined with standard hysteresis and free hysteresis, but is not suited for combination with comparator hold.

The following figure shows filtering of 2 example signals, the left one without, the right one with a spike. The filter delays the edge of the resulting signal by the filter duration plus the double length of the spike's length.

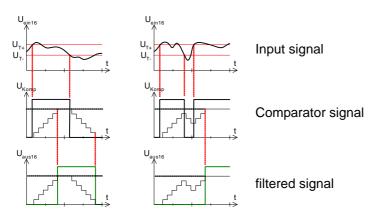
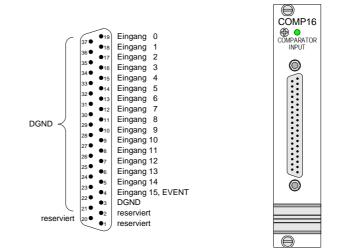


Fig. 117 – Pro II-Comp-16 Rev. E: Comparator filter

Read comparator bits

You read the comparator bits with instructions for digital inputs like **P2_Digin_Long**.

With comparator hold / standard hysteresis the bits are assigned to the channels as follows:


Bit no.	3116	15	14	 2	1	0
Channel no.	-	16	15	 3	2	1

The comparator bits for the channel pairs of the free hysteresis are the bits 16...23; the bits are assigned to the channel pairs as follows:

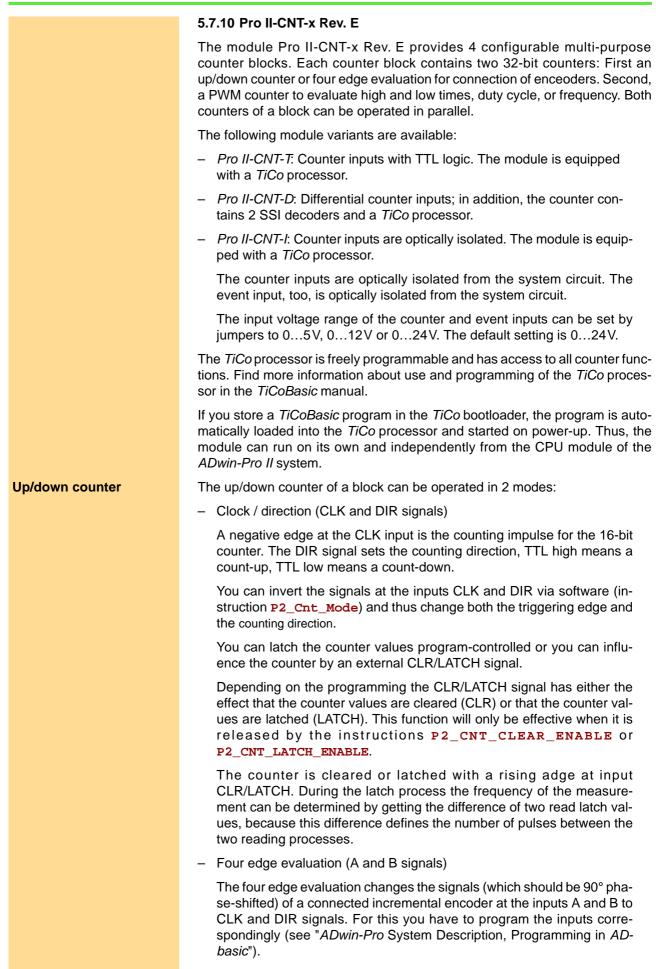
Bit no.	3124	23	22	 17	16	150
Channel pair.	-	15, 16	13, 14	 3, 4	1, 2	-

Event input

Channel 16 does also work as event input, so there is no separate pin for this function. The signal after the comparator is used as event signal .

Input channels	16 single-ended inputs each with its own comparator
	Threshold adjustable for groups of 4 channels each
Event inputs	1
Spannungsfestigkeit	-2V+32V
Input voltage range	-1V +30V
Clock rate	50MHz
Resolution of threshold	16 Bit
DAC settling time	30µs
Input Fifo	Size: 511 value pairs Frequency: 100MHz
Connector	37-pin D-Sub female connector

Fig. 119 – Pro II-Comp-16 Rev. E: Specification

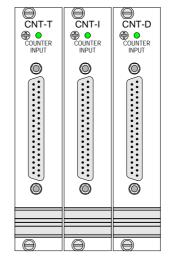


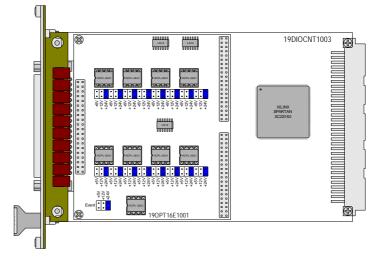
Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and Pro II Software manual.

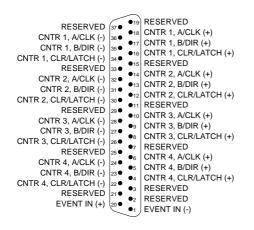
The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Function	Instructions
Do mode and comparator	P2_Comp_Init
settings	P2_Comp_Filter_Init
	P2_Comp_Set
Query comparator bits	P2_Digin_Edge
	P2_Digin_Long
Use latch register	P2_Dig_Latch, P2_Sync_All
	P2_Dig_Read_Latch
Monitor edges of input chan-	P2_Digin_FIFO_Enable
nels	P2_Digin_FIF0_Read
	P2_Digin_FIF0_Read_Fast
	P2_Digin_FIF0_Read_Timer
	P2_Digin_FIF0_Clear
	P2_Digin_FIF0_Full
Use LED	P2_Check_LED, P2_Set_LED
Use interrupt and event inputs	P2_Event_Enable, P2_Event_Read
	P2_Event_Config




'Enable next conversion				
For n = 1 To 32 'Go through all possible 32 bits				
' _"_				
If (Par_2 = 1) Then 'Start of conversion m = 0 'initialize value				
	*			
be converted	- <u>Q</u> -			
•	N 1 4			
 Clock rates are set with <u>SSI_Set_Clock</u> from 6.1kHz 12.5MHz. 				
Decoder properties can be set via software:				
A decoder either reads out an individual value (on request) or continuously pro- vides the current value.				
The module variant <i>Pro II-CNT-D</i> provides 2 decoders to connect incremental encoders with SSI interface. The signals are differential and have RS422/485 levels.				
provides 2 decoders to connect incremental	SSI decoder			
The PWM counter of the counter block analyzes the signals at the PWM inputs. You can set the input pin as well as the triggering edge with the instruction P2_Cnt_Mode.				
the counter (after release of the CLR or eared when the signals A, B and CLR are				
	as the triggering edge with the instruction <i>CNT-T</i> the PWM input pins A and B are tied LK and DIR to clock / direction evaluation. And DIR to clock / direction evaluation. <i>CNT-T</i> the PWM input pins A and B are tied And DIR to clock / direction evaluation. <i>Converted</i> <i>Clock</i> from 6.1kHz 12.5MHz. <i>Clock</i> from 6.1kHz 12.5MHz. <i>Converted</i> <i>Converted</i> <i>Converted</i> <i>Converted</i> <i>Converted</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i> <i>Conversion</i>			

Pro II: Digital-I/O Modules Pro II-CNT-x Rev. E



Pin assignment Pro II-CNT-D

Pin assignment Pro II-CNT-I

Counter	4 multi-purpose counters Cnt-D: 2 SSI decoders in addition
Counter resolution	32 bit
Event input	1
Reference clock	50MHz
Clock frequency four edge evaluation	12.5MHz max. (at 90° phase-shift of the signals)
Clock frequency up/down counter	CNT-T: 25MHz max. CNT-I, CNT-D: 15MHz max.
Reference frequency PWM analysis	100MHz
Connector	37-pin D-Sub female connector
TiCo	Prozessor type: TiCo1 Clock rate: 50MHz Memory size: 28kiB PM internal, 28kiB DM internal
Power consumption	CNT-T approx. 150mA CNT-D approx. 200mA CNT-I approx. 200mA

Fig. 122 - Pro II-CNT-x Rev. E: General specification

Pro II-CNT-T			
Input / output level	TTL logic		
Event input	TTL logic		
Isolation	none		
Pro II-CNT-D			
Input / output level		to RS422/48 Ω bus termiir	`
Event input	1 differential (singleded operation possible)		
Clock frequency SSI deccoder (CLK)	6kHz 12.5MHz		
Isolation	none		
Pro II-CNT-I			
Input current	typ.3.5mA / max. 7.5mA		
input voltage range (selectable via jumpers)	05V	0 12V	024V
reliable switching threshold ¹ for 0 (low)	00.8V	01.6V	03.2V
reliable switching threshold ¹ for 1 (high)	4.55V	1012V	2024V
Input over-voltage	8V	16V	30 V
Negative voltage	-5V for all ranges		
Switching time	100ns		
Isolation	42V channel-channel / channel-GND		

Fig. 123 – Pro II-CNT-x Rev. E: Specification

Programming in ADbasic

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Function	Instructions	
Configure counters	P2_Cnt_Enable, P2_Cnt_Mode	
Use counters	P2_Cnt_Clear, P2_Cnt_Get_Status P2_Cnt_Latch P2_Cnt_Read, P2_Cnt_Read4 P2_Cnt_Read_Latch P2_Cnt_Read_Latch4	
Use PWM counters	P2_Cnt_PW_Enable, P2_Cnt_PW_Latch P2_Cnt_Get_PW, P2_Cnt_Get_PW_HL	
Use SSI decoders (CNT-D only)	P2_SSI_Mode, P2_SSI_Set_Bits P2_SSI_Set_Clock P2_SSI_Set_Delay, P2_SSI_Read P2_SSI_Read2 P2_SSI_Start, P2_SSI_Status	
Use event inputs	P2_Event_Enable, P2_Event_Config P2_Event_Read	

1. A low/high signal will reliably be recognized in the indicated voltage ranges. But the switching process can also be effected outside these voltage ranges.

Function	Instructions	
Use LED	P2_Check_LED, P2_Set_LED	
Synchronize	P2_Sync_All	

The module can be programmed with *TiCoBasic* instructions. The instructions are described in *TiCoBasic* online help.

The include file Cnt_TiCo.inc contains instructions for the functions:

Function	Instructions
Configure counters	Cnt_Enable, Cnt_Mode
Use counters	Cnt_Clear, Cnt_Get_Status Cnt_Latch, Cnt_Sync_Latch Cnt_Read, Cnt_Read_Latch Cnt_Read_Int_Register
Use PWM counters	Cnt_PW_Enable, Cnt_PW_Latch Cnt_Get_PW_HL
Use SSI decoders (CNT-D only)	SSI_Mode, SSI_Set_Bits SSI_Set_Clock SSI_Set_Delay, SSI_Read SSI_Start, SSI_Status
Use event inputs	Event_Enable, Event_Config Trigger_Event
Use LED	Check_LED, Set_LED

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Function	Instructions
Data exchange with the <i>TiCo</i> processor via global variables	
	P2_RingBuffer_Empty P2_RingBuffer_Full
Control <i>TiCo</i> processor	P2_TiCo_Reset, P2_TiCo_Start, P2_TiCo_Stop P2_Get_TiCo_Bootloader_ Status P2_Get_TiCo_Status, P2_Workload
Control <i>TiCo</i> processes	P2_Process_Status P2_TiCo_Get_Processdelay P2_TiCo_Set_Processdelay P2_TiCo_Start_Process P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

Programming in TiCoBasic

Programming TiCo access

5.8	Pro II:	Extension	and Ir	nterface	Modules
-----	---------	-----------	--------	----------	---------

Modul	RTD-8	TC-8-ISO	
Revision	E	E	
Function	temperature measurement	thermo couple interface	
Measuring	2 wire, 3 wire or 4 wire	_	
Temp. range	-200°C+700°C	B: 250°C 1820°C E: -200°C1000°C J: -210°C1250°C K: -200°C 1372°C N: -200°C 1300°C R: -50°C 1768°C S: -50°C 1768°C T: -270°C 400°C	
Precision	±0.050.1K	±1K	
Channels	8	8	
Page	130	134	

Module	CAN-2	CAN-2-LS	LIN-2	Profi-SL
Revision	E	E	E	E
Туре	CAN interface		LIN bus interface	Profibus interface
Interface type	High speed Low speed		_	—
Interfaces	2		2	1
Page	136		149	152

Module	RSxxx-2	RSxxx-4	RS422-4
Revision	E	E	E
Туре	RSxxx interface		RS422
Interface type	RS232 RS485	RS232 RS485	RS422
Interfaces	2	4	4
Data exchange rate	0.035 2304 kBaud	0.035 2304 kBaud	0.035… 2304 kBaud
Page	14	146	

Module	MIL-1553	ARINC-429
Revision	E	E
Туре	MIL-1553 interface	ARINC-429 interface
Interface type	-	-
Interfaces	2	3
Data exchange rate	1 MBit/s	100 kBit/s or 12.5 kBit/s
Page	155	158

Module	FlexRay-2	EtherCAT- SL	LS bus
Revision	E	E	Е
Function	FlexRay interface	EtherCAT interface	LS bus interface
Interfaces	2	1	2
Page	163	164	189

Module	SENT-4	SENT-6	SENT-4-Out
Revision	E	E	E
Туре	SENT interface	SENT interface	SENT interface
Interface type	4 inputs	6 inputs	4 outputs
Digital channels	-	4 in, 4 out	4 in, 4 out
Page	167	172	177

5.8.1 Pro II-RTD-8 Rev. E

The module Pro II-RTD-8 Rev. E has 8 inputs for connecting platinum resistance temperature detectors of the type Pt 100, Pt500, Pt1000, or Ni100. The inputs are connected via a multiplexer with an ADC. The maximum possible measurement range is -200°C...+700°C, depending on the temperature sensor (see data sheets of manufacturer).

There are 2 module variants:

- Pro II-RTD-8 Rev. E: Module inputs on a 37-pin D-Sub connector.
- Pro II-RTD-8-L Rev. E: Module inputs on Lemo connectors. Pin assignment see fig. 125.

Measurements can be done with 2, 3 or 4 wire technique; input circuit see fig. 124. Measuring method and sensor type are set vie software.

Measuring methods and wiring between sensor and module are described starting from page 132.

Measurements are performed automatically by a sequence control according to the settings. Thus, the *ADwin* CPU will only have to read the measured values.

Input signals run through a second order low-pass filter with 25kHz. Additionally, you can use the instruction **P2_RTD_Channel_Config** to filter a single frequency from the digital signals; the measurement value is calculated as mean value of several measurements being done in defined sampling intervals.

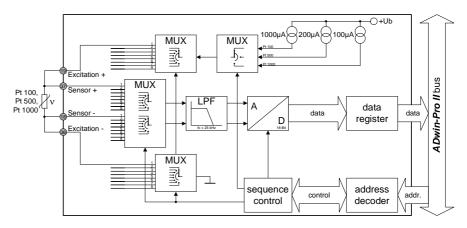
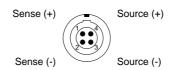



Fig. 124 – Pro II-RTD-8 Rev. E: Block diagram

Inputs	8
Measurement	2 wire, 3 wire or 4 wire
Multiplexer settling time	100µs
Input filter	25kHz (2nd order)
Max. measurement range	-200°C+700°C

Fig. 126 – Pro II-RTD-8 Rev. E: Specification

Pro II: Extension and Interface Modules Pro II-RTD-8 Rev. E

Accuracy	PT100: ±0.05K PT500: ±0.1K PT1000: ±0.1K Ni100: ±0.05K
Temp. resolution	0.015K
Drift	±10ppm/K
$ _1 = _2$	PT100: 1mA PT500: 0.2mA PT1000: 0.1mA Ni100: 1mA
Connector	37-pin D-Sub female connector or Lemo connectors

Fig. 126 - Pro II-RTD-8 Rev. E: Specification

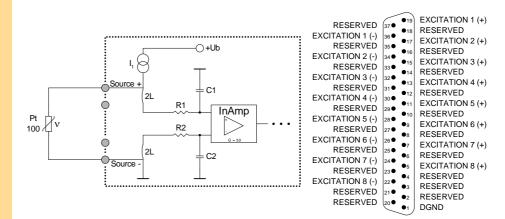
Programming

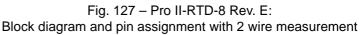
The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains instructions for the following functions:

Range	Instruction
Configure module	P2_RTD_Config
	P2_RTD_Channel_Config
Access temperature channels	P2_RTD_Start
	P2_RTD_Status
	P2_RTD_Read
	P2_RTD_Read8
Convert measured value	P2_RTD_Convert
Use LED	P2_Check_LED, P2_Set_LED

Measurement Method


You can choose one of three measurement methods: 2 wire measurement, 3 wire measurement or 4 wire measurement. 4 wire measurement is recommended because it is the most precise method.


2 wire measurement

Please pay attention to a very short connection with low impedance between the Pt sensor and the module input, because the voltage drop gets added to the measured voltage.

This is the reason why this measurement method is in general not to be recommended for precise measurements.

Running a 2 wire measurement on channel n, you connect the sensor to the inputs Excitation + and Excitation -. For channel 1 it would be pins 19 and 36 (see fig. 127) on the D-Sub connector.

- 3 wire measurement

In order to avoid the disadvantages of the 2 wire measurement, the voltage drop in the measurement lines is here compensated by a second voltage source I2.

To keep the measurement error as small as possible, the resistance value of the three measurement lines from the Pt sensor to the module input should be identical.

With a 3 wire measurement, you need 2 measurements for each measurement value. Thus, a 3 wire measurement requires double the time of 2 or 4 wire measurement.

Running a 3 wire measurement on channel n, you connect the sensor to the inputs Excitation +, Sensor - and Excitation -. For channel 1 it would be pins 18, 19 and 36 (see fig. 128) on the D-Sub connector.

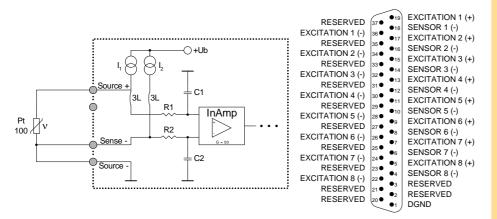


Fig. 128 – Pro II-RTD-8 Rev. E: Block diagram and pin assignment with 3 wire measurement

- 4 wire measurement

The voltage drop at the Pt sensor is directly avoided with high impedance at the PCB by the two "sensor" inputs. The resistance of the measurement lines does not have an effect here any longer and need therefore not be compensated.

Running a 4 wire measurement on channel n, you connect the sensor to the inputs Excitation +, Sensor +, Sensor - and Excitation -. For channel 1 it would be pins 18, 19, 36 and 37 (see fig. 129) on the D-Sub connector.

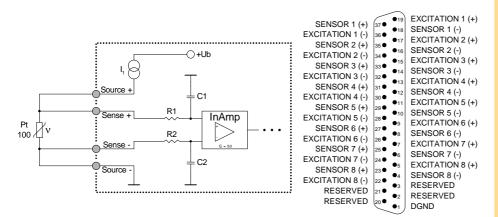


Fig. 129 – Pro II-RTD-8 Rev. E: Block diagram and pin assignment with 4 wire measurement

5.8.2 Pro II-TC-8 ISO Rev. E

The module Pro II-TC-8 ISO Rev. E has 8 inputs for thermocouples and can be operated with thermocouple types B, E, J, K, N, R, S or T. For each channel the thermoelectric voltage (with or without cold junction correction) or the temperature may be queried separately via software.

Each channel is equipped with a separate ADC. The module provides a common cold junction compensation for all temperature inputs.

The jumper position (see fig. 132, left side) sets for each channel separately if the channel potentials are separated from each other:

- Position right: The channel potentials are separated from each other (default).
- Position left: The channel's negative input is connected to ground.

Input signals at the ADCs are digitized at a stepwise adjustable sample rate. As soon as a value is queried via software, the module calculates the thermoelectric voltage or the temperature in °Celsius or °Fahrenheit from the last measurement value. All calculation is based upon the norm IEC 584-1. The thermoelectric voltage without cold junction correction can be returned, too.

The inputs have a Butterworth filter with 5 Hz as low-pass. The module can also be ordered without low-pass.

Calibration of the module is performed by the manufacturer. If needed, please send the module to the address given on the back of the cover page.

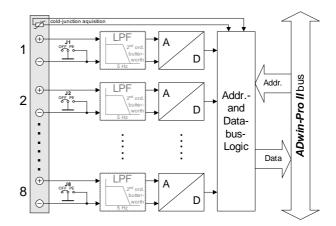
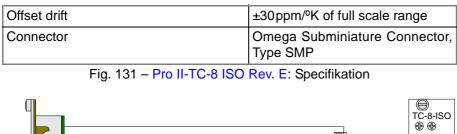



Fig. 130 – Pro II-TC-8 ISO Rev. E: Block diagram

Input channels	8
Sample rate	7Hz 3500Hz
Thermocouple types, measuring range and accuracy	B: 250°C 1820°C; ±5°C E: -200°C1000°C; ±1°C J: -210°C1250°C; ±1°C K: -200°C 1372°C; ±1°C N: -200°C1300°C; ±2°C R: -50°C 1768°C; ±3°C S: -50°C 1768°C; ±3°C T: -270°C 400°C; ±1°C
Resolution	0.1°C
Input resistance	10MΩ
Input filter	5Hz Butterworth
Input over-voltage	±20V

Fig. 131 – Pro II-TC-8 ISO Rev. E: Specifikation

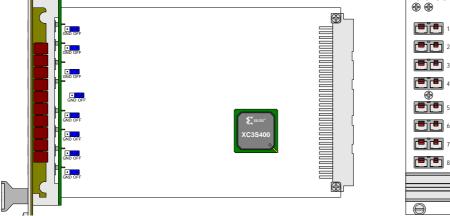


Fig. 132 - Pro II-TC-8 ISO Rev. E: Board and front panel

The following instructions are used to program the module:

Programming

Set sampling rate	P2_TC_Set_Rate
Copy input values to latches	P2_TC_Latch, P2_Sync_All
Read values	P2_TC_Read_Latch P2_TC_Read_Latch4, P2_TC_Read_Latch8

5.8.3 Pro II-CAN-2 Rev. E

The module Pro II-CAN-2 Rev. E has 2 CAN interfaces, a high speed or a low speed version. The names for the module versions are:

- Pro II-CAN-2 Rev. E: CAN interface high speed
- Pro II-CAN-2-LS Rev. E: CAN interface low speed

Each module is equipped with a freely programmable *TiCo* processor, which has full access to the CAN interfaces. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

The manual is divided into the following sections:

- CAN Controller
- TiCo processor
- Hardware design
- Message Management
- Setting the bus frequency
- Enable Interrupt / Trigger Event
- Module revisions
- Programming

CAN Controller

The CAN bus interface is equipped with the Intel[®] CAN controller AN82527 which works according to the specification CAN 2.0 parts A and B as well as to ISO 11898. You program the interface with *ADbasic* instructions, which are directly accessing the controller's registers.

Messages sent via CAN bus are data telegrams with up to 8 bytes, which are characterized by so-called identifiers. The CAN controller supports identifiers with a length of 11 bit and 29 bit. The communication, that means the management of bus messages, is effected by 15 message objects.

The registers are used for configuration and status display of the CAN controller. Here the bus speed and interrupt handling, etc. are set (see separate documentation "82527 - Serial Communications Controller, Architectural Overview" by $Intel^{(R)}$)

The CAN bus can be set to frequencies of up to 1 MHz and is usually operated with 1MHz; with low speed CAN the max. frequency is 125kHz. The CAN bus is galvanically isolated by optocouplers from the *ADwin* system.

An arriving message can trigger an interrupt which instantaneously generates an event at the processor. Therefore an immediate processing of messages is guaranteed.

TiCo processor

The module provides the freely programmable *TiCo* processor with 28 KiB program memory, and 28 KiB data memory. The *TiCo* processor has access to the CAN controller. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

Message

Pro II: Extension and Interface Modules Pro II-CAN-2 Rev. E

Hardware design

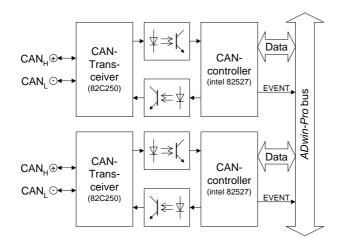


Fig. 133 - Pro II-CAN-2: Block diagram

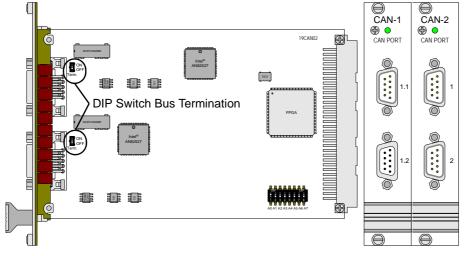


Fig. 134 - Pro II-CAN-2: PCB and front panels

The connections of the CAN bus interface are on the 9-pin D-SUB connector; the pin assignment is shown below.

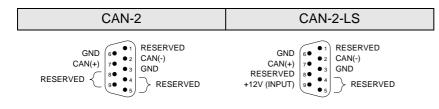


Fig. 135 – Pro II-CAN-2: Pin assignment (male)

The "low speed" version Pro II-CAN-2-LS requires an external power supply of 12V DC. The module needs a power supply for each controller separately.

If the CAN module functions as the physical termination of a high-speed CAN bus, it must be terminated with a 120Ω resistor (only the first or the last CAN node).

If a termination is necessary, move the DIP switch (see fig. 134) upward. CAN nodes, which are not positioned in an end-location, must not be terminated.

Power supply (Low speed only)

Bus termination (High speed only)

	Message Management
Identifier	The CAN controller identifies messages by an identifier; these are parameters in a defined bit length. The parameters 02 ¹¹ -1 or 02 ²⁹ -1 result from the bit length.
Message objects	The controller stores each message (incoming or outgoing) in one out of 15 message objects. The message objects can either be configured to send or to receive messages. Message object 15 can only be used to receive messages. After initializing the CAN controller all message objects are not configured.
	Each message object has an identifier, which enables the user to assign a message to a message object.
Transferring messages	In <i>ADbasic</i> a message is transferred to a message object using the array can_msg[], which can receive 8 data bytes plus the amount of data bytes (selements). When reading a message from the message object it can also be transferred to the array can_msg[].
Sending messages	Sending a message is made as follows:
	 You configure a message object to send and define the identifier of the object (instruction En_Transmit).
	- Save the message in can_msg[].
	 Send the message (instruction Transmit). The message in the array can_msg[] is transferred to the message object. As soon as the bus is ready, the message is sent (with the identifier of the message object).
Receiving messages	Receiving a message is made as follows:
	 You configure a message object to receive and define the identifier of the object (instruction En_Receive).
	 The controller monitors the CAN bus if there are incoming messages and saves messages with the right identifier in the message object.
	 Transfer the message from the message object into the array can_msg[] (instruction Read_Msg) and read out the corresponding identifier.
	An arriving message overwrites the old data in the message object, which wi be definitely lost. Therefore pay attention to reading out the data faster that you are receiving them. A data loss is indicated by a flag.
	The message object 15 has an additional buffer, so that 2 messages can be stored there.
Assigning messages	The allocation of an arriving message to a message object is automatically controlled by comparing its identifiers. The global mask (CAN registers 67 o 69) controls this comparison as follows:
	 The identifier of the message is bit by bit compared to the identifier of the message object. If the relevant bits are identical, the message is trans- ferred to the message object. Not relevant bits are not compared to each other, that is, the message is transferred to the object (if it depends on this bit).
	 Relevant bits are set in the global mask.
Global mask	With the global mask a message object is used for receiving messages with different identifiers (ID). The following example shows the assignment of the message IDs 14 to the message object IDs 14, when all bits of the global mask are set, except the two least-significant bits (if you have an 11-bit identifier it is 1111111100b).

Message ID	ID of the message object			
	1	2	3	4
	001b	010b	011b	…100b
1 (001b)	х	х	х	0
2 (010b)	х	х	х	0
3 (011b)	х	х	х	0
4 (100b)	0	0	0	х

x: Message is admitted

0: Message is not admitted

In this example the comparison of bit 2 is responsible for the assignment of the messages, because the bits 3...10 of the compared identifiers are identical (= 0) and the bits 0 and 1 are not compared, because they are set to zero in the global mask (= not relevant).

Setting the bus frequency

The CAN bus frequency depends on the configuration of the controller.

The initialization with **Init_CAN** configures the controller automatically to a CAN bus frequency of 1 MHz. If the CAN bus is to operate with a different frequency, just use the instruction **Set_CAN_Baudrate**.

With low speed CAN the maximum bus frequency is 125kBit/s.

In some special cases it may be better to select configurations other than those set with <u>Set_CAN_Baudrate</u>. For this purpose specified registers have to be set with the instruction <u>Poke</u>. The structure of the register is described in the controller documentation.

Enable Interrupt / Trigger Event

A message object can be enabled to trigger an interrupt when a message arrives. The interrupt output of the CAN controller is connected to the event input of the processor. The processor reacts immediately to incoming messages without having to control the message input (polling).

You can enable the interrupts of several message objects. Which object has caused the interrupt can be seen in the interrupt register (5Fh): It contains the number of the message object that caused the interrupt. If the interrupt flag (new message flag) is reset in the message object, the interrupt register will be updated. If there is no interrupt the register is set to 0. If another interrupt occurs during working with the first interrupt its source will be shown in the interrupt register. An additional interrupt does not occur in this case.

Module revisions

The differences between the revisions are described below:

Revision	Output date	Previous changes
E1		First version

Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains instructions for the following functions:

Bus frequency for special cases

	Function	Instructions	
	Initializate CAN controller, set Baud rate	P2_INIT_CAN P2_Set_CAN_Baudrate	
	Transfer message objects	P2_En_Receive P2_Read_Msg P2_En_Transmit P2_Transmit	
	Set and read registers	P2_Set_CAN_Reg P2_Get_CAN_Reg	
	Use LED	P2_Check_LED P2_Set_LED P2_CAN_Set_LED	
	Use interrupt and event inputs	P2_En_Interrupt P2_Event_Enable P2_Event_Config P2_Event_Read	
Programming in TiCoBasic	The module can be programmed with <i>TiCoBasic</i> instructions. The instruction are described in <i>TiCoBasic</i> online help.		
	The include file CAN_TiCo.inc contains	instructions for the functions:	
	Function	Instructions	
	Initialize CAN controller, set Baud rate	INIT_CAN Set_CAN_Baudrate	
	Transfer message objects	En_Receive, Read_Msg Read_Msg_Con En_Transmit, Transmit Transmit_Status	
	Set and read registers	Set_CAN_Reg,Get_CAN_Reg	
	Use LED	Check_LED, Set_LED CAN_Set_LED	
	Use interrupt	En_Interrupt	
Programming TiCo access	To access the <i>TiCo</i> processor from the ADwin CPU the following <i>ADbas</i> instructions are defined in the include file ADwinPro_All.inc. The instructions are described in <i>ADbasic</i> online help and in the <i>TiCoBasic</i> manual.		
	Function Instructi	ons	
	P2_G P2_SetI P2_Set P2_Get_ P2_Set_ P2_Set_ P2_Ring		
	P2_T P2_Get_ Stat	o_Reset, P2_TiCo_Start, iCo_Stop TiCo_Bootloader_ is TiCo_Status, P2_Workload	

Function	Instructions
Control TiCo processes	P2_Process_Status
	P2_TiCo_Get_Processdelay
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start_Process
	P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.8.4 Pro II-RSxxx Rev. E

The Pro II-RSxxx module has 2 or 4 interfaces of the type RS-232 or RS-485. The type of interface is selected with the instruction P2_RS485_Send.

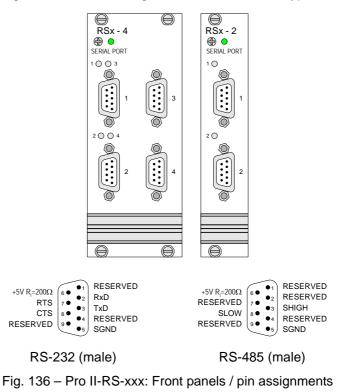
The names for the module versions are:

- Pro II-RSx-2 Rev. E: 2 interfaces RS232/485
- Pro II-RSx-4 Rev. E: 4 interfaces RS232/485

All modules of the RSxxx-y modules are equipped with the "Quad Universal Asynchronous Receiver/Transmitter" (UART) controller, type TL16C754 from Texas Intruments[®]. Functionality and programming of the interfaces are based on this controller.

Each module is equipped with a freely programmable *TiCo* processor, which has full access to the RSxxx interfaces. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.


The physical difference between the interface versions is their signal level, which is provided by appropriate drivers on the bus.

The description is divided into the following paragraphs:

- Hardware
- Interface parameters
- Module revisions
- Programming

Hardware

These are the front panels and pin assignments of the modules Pro II-RSxxx. The pin assignment is switched together with the interface type.

Handshake

Parity

Data bits

Stop bits

Baud rate

Interface parameters

Each interface has an input and an output FIFO with a length of 64 bytes each. The settings of the interface parameters are made separately for each channel, using the controller register. Below the settings are described more detailed:

- Handshake: The interface can be operated in 3 modes:
 - 1. Without handshake
 - 2. Software handshake
 - Hardware handshake (RS232 only).
 When using the hardware handshake the signals RTS and CTS must be connected.
- Parity: In order to recognize an error or incorrect data during the transfer, a parity bit can be transferred at the same time. The parity can be even or odd or you can have no parity bit at all.
- Data bits: the active data to be transferred may be 5...8 bits long.
- Stop bits: The number of stop bits can be set to 1, 1¹/₂ or 2. Here the number of stop bits depends on the number of data bits:
 - 5 data bits: 1 or 1¹/₂ stop bits.
 - 6...8 data bits: 1 or 2 stop bits.
- Baud rate: The physical data are between 35 Baud and 2.304 MBaud; when using an RS-232 interface the maximum Baud rate is 115.2kBaud, according to the specification.

The Baud rates are derived from the clock rate of the module; the basic clock rate has a frequency of 2.304MHz. Based on this fact, every Baud rate is possible, which can be derived from an integer division of the basic frequency. The divisor can have values between 1...0FFFFh. The following table shows some common Baud rates and their divisors.

Baud rate	Divisor		Baud rate	Div	visor
	dec.	hex.		dec.	hex.
2.304.000	1	0001h	19.200	120	0078h
1.152.000	2	0002h	9.600	240	00F0h
460.800	5	0005h	4.800	480	01E0h
230.400	10	000Ah	2.400	960	03C0h
115.200	20	0014h	1.200	1920	0780h
57.600	40	0028h	600	3840	0F00h
38.400	60	003Ch	300	7680	1E00h

Fig. 137 - Pro II-RS-xxx: Baud rates

Contrary to the RS232 and RS422 interface, with RS485 more than 2 participants can communicate with each other. With an RS485 interface a bus is set up.

Consider the following:

- There is no handshake, because a handshake is only possible between two participants.
- The interface must know if it should write to the bus or get data from the bus (RS485_SEND).

Special features of RS485

	Module revisions	
	The difference between the revisions is	s described below:
	Revision Release Previous cha date	anges
	E 11/2007 First version	
	Programming	
Programming in ADbasic		med with <i>ADbasic</i> instructions. The online help and in the Pro II Software
	The include file ADwinPro_All.inc functions:	contains instructions for the following
	Function	Instructions
	Initialization	P2_RS_INIT, P2_rs_reset
	Receiving and transmitting of data	P2_read_fifo, P2_write_fifo
	Configure RS485 channel	P2_RS485_Send
	Write and read access to the controlle register	er P2_GET_RS, P2_SET_RS
	Use LED	P2_Check_LED, P2_Set_LED P2_RS_Set_LED
Programming in TiCoBasic	are described in TiCoBasic online help	<i>TiCoBasic</i> instructions. The instructions
		contains instructions for the following
	functions:	
	functions: Function	Instructions
	functions:	
	functions: Function Initialization	Instructions RS_INIT, rs_reset read_fifo, write_fifo
	functions: Function Initialization Receiving and transmitting of data	Instructions RS_INIT, rs_reset read_fifo, write_fifo Check_Shift_Reg RS485_Send
	functions: Function Initialization Receiving and transmitting of data Configure RS485 channel Write and read access to the controlled	Instructions RS_INIT, rs_reset read_fifo, write_fifo Check_Shift_Reg RS485_Send
Programming TiCo access	functions: Function Initialization Receiving and transmitting of data Configure RS485 channel Write and read access to the controller register Use LED To access the <i>TiCo</i> processor from t	Instructions RS_INIT, rs_reset read_fifo, write_fifo Check_Shift_Reg RS485_Send er GET_RS, SET_RS Check_LED, Set_LED RS_Set_LED he ADwin CPU the following ADbasic file ADwinPro_All.inc. The instruc-
	functions: Function Initialization Receiving and transmitting of data Configure RS485 channel Write and read access to the controller register Use LED To access the <i>TiCo</i> processor from t instructions are defined in the include tions are described in <i>ADbasic</i> online I	Instructions RS_INIT, rs_reset read_fifo, write_fifo Check_Shift_Reg RS485_Send er GET_RS, SET_RS Check_LED, Set_LED RS_Set_LED he ADwin CPU the following ADbasic file ADwinPro_All.inc. The instruc-
	functions: Function Initialization Receiving and transmitting of data Configure RS485 channel Write and read access to the controller register Use LED To access the <i>TiCo</i> processor from to instructions are defined in the include tions are described in <i>ADbasic</i> online I Function Instruction P2_T processor via global variables P2_G P2	Instructions RS_INIT, rs_reset read_fifo, write_fifo Check_Shift_Reg RS485_Send er GET_RS, SET_RS Check_LED, Set_LED RS_Set_LED the ADwin CPU the following ADbasic file ADwinPro_All.inc. The instruc- help and in the <i>TiCoBasic</i> manual. Jctions Drv_Init etData_Long, P2_Get_Par, 8_Get_Par_Block
	functions: Function Initialization Receiving and transmitting of data Configure RS485 channel Write and read access to the controller register Use LED To access the <i>TiCo</i> processor from to instructions are defined in the include tions are described in <i>ADbasic</i> online I Function Instructions P2_T processor via global variables P2_G P2_S	Instructions RS_INIT, rs_reset read_fifo, write_fifo Check_Shift_Reg RS485_Send er GET_RS, SET_RS Check_LED, Set_LED RS_Set_LED the ADwin CPU the following ADbasic file ADwinPro_All.inc. The instruc- help and in the <i>TiCoBasic</i> manual. Junctions Drv_Init etData_Long, P2_Get_Par, 2.Get_Par_Block etData_Long, P2_Set_Par,
	functions: Function Initialization Receiving and transmitting of data Configure RS485 channel Write and read access to the controller register Use LED To access the <i>TiCo</i> processor from to instructions are defined in the includer tions are described in <i>ADbasic</i> online for the formation of the tion of the	Instructions RS_INIT, rs_reset read_fifo, write_fifo Check_Shift_Reg RS485_Send er GET_RS, SET_RS Check_LED, Set_LED RS_Set_LED he ADwin CPU the following ADbasic file ADwinPro_All.inc. The instruc- help and in the <i>TiCoBasic</i> manual. Junctions Drv_Init etData_Long, P2_Get_Par, 2_Get_Par_Block et_TiCo_RingBuffer,
	functions: Function Initialization Receiving and transmitting of data Configure RS485 channel Write and read access to the controller register Use LED To access the <i>TiCo</i> processor from to instructions are defined in the include tions are described in <i>ADbasic</i> online I Function Instructions Data exchange with the <i>TiCo</i> P2_T processor via global variables P2_G P2_S P2_S P2_S P2_S	Instructions RS_INIT, rs_reset read_fifo, write_fifo Check_Shift_Reg RS485_Send er GET_RS, SET_RS Check_LED, Set_LED RS_Set_LED the ADwin CPU the following ADbasic file ADwinPro_All.inc. The instruc- help and in the <i>TiCoBasic</i> manual. Utions Drv_Init etData_Long, P2_Get_Par, 2_Get_Par_Block etData_Long, P2_Set_Par, 2_Set_Par_Block

Function	Instructions
Control <i>TiCo</i> processor	P2_TiCo_Reset, P2_TiCo_Start, P2_TiCo_Stop P2_Get_TiCo_Bootloader_ Status P2_Get_TiCo_Status, P2_Workload
Control <i>TiCo</i> processes	P2_Process_Status P2_TiCo_Get_Processdelay P2_TiCo_Set_Processdelay P2_TiCo_Start_Process P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.8.5 Pro II-RS422-4 Rev. E

The module Pro II-RS422-4 Rev. E has 4 interfaces of the type RS-422.

The module is equipped with the "Quad Universal Asynchronous Receiver/Transmitter" (UART) controller, type TL16C754 from Texas Intruments[®]. Functionality and programming of the interfaces are based on this controller.

Each module is equipped with a freely programmable *TiCo* processor, which has full access to the RS422 interfaces. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

The description is divided into the following paragraphs:

- Hardware
- Interface parameters
- Module revisions
- Programming

TiCo processor

The module provides the freely programmable *TiCo* processor with 28KiB program memory, and 28KiB data memory. The *TiCo* processor is programmed with *TiCoBasic*.

The *TiCo* processor has access to the RS422 controller. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

Hardware

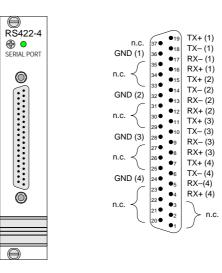


Fig. 138 – Pro II-RS422-4 Rev. E: Front panel and pin assignment

Interface parameters

Initialize the interfaces for RS422 operation first with **P2_RS_Init**.

Each interface has an input and an output FIFO with a length of 64 bytes each. The settings of the interface parameters are made separately for each chan-

Parity

Data bits

Stop bits

Baud rate

Handshake

nel, using the controller register. Below the settings are described more detailed:

- Handshake: The interface can be operated in 2 modes:
 - 1. Without handshake
 - 2. Software handshake
- Parity: In order to recognize an error or incorrect data during the transfer, a parity bit can be transferred at the same time. The parity can be even or odd or you can have no parity bit at all.
- Data bits: the active data to be transferred may be 5...8 bits long.
- Stop bits: The number of stop bits can be set to 1, 1½ or 2. Here the number of stop bits depends on the number of data bits:
 - 5 data bits: 1 or $1\frac{1}{2}$ stop bits.
 - 6...8 data bits: 1 or 2 stop bits.
- Baud rate: The physical data are between 35 Baud and 2.304 MBaud.

The Baud rates are derived from the clock rate of the module; the basic clock rate has a frequency of 2.304MHz. Based on this fact, every Baud rate is possible, which can be derived from an integer division of the basic frequency. The divisor can have values between 1...0FFFFh. The following table shows some common Baud rates and their divisors.

Baud rate	Divisor		Baud rate	Div	visor
	dec.	hex.		dec.	hex.
2.304.000	1	0001h	19.200	120	0078h
1.152.000	2	0002h	9.600	240	00F0h
460.800	5	0005h	4.800	480	01E0h
230.400	10	000Ah	2.400	960	03C0h
115.200	20	0014h	1.200	1920	0780h
57.600	40	0028h	600	3840	OFOOh
38.400	60	003Ch	300	7680	1E00h

Fig. 139 - Pro II-RS422-4 Rev. E: Baud rates

Module revisions

The difference between the revisions is described below:

Revision	Release date	Previous changes
E	11/2011	First version

Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Function	Instructions
Initialization	P2_RS_Init, P2_RS_Reset
Receiving and transmitting of data	P2_Read_Fifo, P2_Write_Fifo

Programming in ADbasic

Pro II: Extension and Interface Modules Pro II-RS422-4 Rev. E

	Function	Instructions			
	Write and read access to the contr register	roller P2_Get_RS, P2_Set_RS			
	Use LED	P2_Check_LED, P2_Set_LEI P2_RS_Set_LED			
Programming in FiCoBasic	The module can be programmed with <i>TiCoBasic</i> instructions. The instructions are described in <i>TiCoBasic</i> online help.				
	The include file RS_LIN_TiCo.in functions:	nc contains instructions for the following			
	Function	Instructions			
	Initialization	RS_Init, RS_Reset			
	Receiving and transmitting of data	Read_Fifo,Write_Fifo Check_Shift_Reg			
	Write and read access to the contr register	roller Get_RS, Set_RS			
	Use LED	Check_LED, Set_LED RS_Set_LED			
ICCESS					
ICCESS	tions are described in <i>ADbasic</i> onlin	de file ADwinPro_All.inc. The instruction help and in the <i>TiCoBasic</i> manual.			
access	tions are described in <i>ADbasic</i> onlin Function In Data exchange with the <i>TiCo</i> P2	ne help and in the <i>TiCoBasic</i> manual.			
ICCESS	tions are described in <i>ADbasic</i> online Function Instance of the termination of t	ne help and in the <i>TiCoBasic</i> manual. structions <u>TDrv_Init</u> <u>GetData_Long</u> , P2_Get_Par,			
access	tions are described in <i>ADbasic</i> online Function Inst Data exchange with the <i>TiCo</i> P2 processor via global variables P2	ne help and in the <i>TiCoBasic</i> manual. structions <u>Cartorv_Init</u> <u>Cartortata_Long</u> , P2_Get_Par, P2_Get_Par_Block			
ICCESS	tions are described in <i>ADbasic</i> onlin Function Ins Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2	The help and in the <i>TiCoBasic</i> manual. Structions <u>-</u> TDrv_Init <u>-</u> GetData_Long, P2_Get_Par, P2_Get_Par_Block <u>-</u> SetData_Long, P2_Set_Par, P2_Set_Par_Block			
access	tions are described in <i>ADbasic</i> online Function Inst Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2	The help and in the <i>TiCoBasic</i> manual. Structions <u>C</u> TDrv_Init <u>C</u> GetData_Long, P2_Get_Par, P2_Get_Par_Block <u>C</u> SetData_Long, P2_Set_Par, P2_Set_Par_Block <u>C</u> Get_TiCo_RingBuffer,			
access	tions are described in <i>ADbasic</i> online Function Inst Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2	The help and in the <i>TiCoBasic</i> manual. Structions 			
ICCESS	tions are described in <i>ADbasic</i> online Function Inst Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2 P2	The help and in the <i>TiCoBasic</i> manual. Structions <u>C</u> TDrv_Init <u>C</u> GetData_Long, P2_Get_Par, P2_Get_Par_Block <u>C</u> SetData_Long, P2_Set_Par, P2_Set_Par_Block <u>C</u> Get_TiCo_RingBuffer,			
ICCESS	tions are described in <i>ADbasic</i> online Function Inst Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2 P2	The help and in the <i>TiCoBasic</i> manual. Structions 			
ICCESS	tions are described in <i>ADbasic</i> onlin Function Ins Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	structions 			
access	tions are described in <i>ADbasic</i> onlin Function Ins Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	The help and in the <i>TiCoBasic</i> manual. Structions 			
ICCESS	tions are described in <i>ADbasic</i> onlin Function Ins Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2 Control <i>TiCo</i> processor P2 P2	structions 			
ICCESS	tions are described in <i>ADbasic</i> onlin Function Ins Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	structions 			
access	tions are described in <i>ADbasic</i> onlin Function Ins Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	structions 			
access	tions are described in <i>ADbasic</i> onlin Function Ins Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2 P2 Control <i>TiCo</i> processor P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	structions 			
access	tions are described in <i>ADbasic</i> onlin Function Ins Data exchange with the <i>TiCo</i> P2 processor via global variables P2 P2 P2 P2 P2 Control <i>TiCo</i> processor P2 P2 P2 P2 P2 P2 P2 P2 P2 P2	structions 			

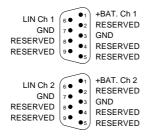
5.8.6 Pro II-LIN-2 Rev. E

The module Pro II-LIN-2 Rev. E provides 2 LIN interfaces, which can be independently configured as LIN master or LIN slave.

LIN Interface

The LIN interfaces of the module are implemented according to spezification "LIN 2.1" (Local Interconnect Network) of november 2006. You program the LIN interfaces with *ADbasic* instructions.

LIN is a serial communication protocol on a one-wire bus with a transfer rate of up to 20 KiBit/s. The bus efficiently supports the control of mechantronic nodes in distributed automotive applications.


Messages sent via LIN bus are data packets with up to 8 bytes payload, which are characterized by so-called identifiers. The management of bus messages is effected by 64 message boxes.

The bus concept refers to a single master node with multiple slave nodes. The master controls the total data transfer of the bus: Before each data packet the master sends a header with the identifier of the next data packet. Then, only this bus node will react (which can also be the master node itself) which manages a message box with the given identifier. Thus, this node will send a data packet to or receive a data packet from the LIN bus.

Hardware design

The connections of the LIN bus interfaces are on the 9-pin D-SUB connectors; the pin assignments are shown below.

For each interface there is a programmable LED.

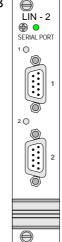


Fig. 140 – Pro II-LIN-2 Rev. E: Pin assignments (male)

Working with LIN bus

The 2 LIN interfaces of the module can be independently configured as LIN master or LIN slave with P2_LIN_Init_Write; this also true for the setting of the baudrate. The bus termination will be switched automatically according to the configuration.

The network master timing (NMT) is to be programmed in *ADbasic*.

While configuring a message box with **P2_LIN_Msg_Write** you set the identifier and the sending mode (send, receive) of the message box. Any number of message boxes can be assigned to a LIN interface, but each identifier may be used only once for sending and once for receiving on the LIN bus; otherwise data collisions will occur.

After configuring, a message box will at once be active on the LIN bus, i.e. data packets can be sent or received.

If a LIN interface is configured as master, you use **P2_LIN_Msg_Transmit** to send a header and the identifier of a message box to the LIN bus. The message boxes configured with this identifier will react automatically.

The message box of a LIN master node operates different from a slave node:

- Master node, send: The LIN master sends both the header (see
 P2_LIN_Msg_Transmit) and then the data packet of the message box.
- Master node, receive: The LIN master sends the header (see
 P2_LIN_Msg_Transmit) on the LIN Bus and waits for the response of the appropriate slave node. The received data packet is stored into the message box.
- Slave node, send: The LIN slave waits until the master sends the header with the identifier which fits to the identifier of the message box. Only then the slave node will its data packet.
- Slave node, receive: The slave node waits until the master sends the header with the identifier which fits to the identifier of the message box. Then the slave receives the data packet and stores it into the message box.

Module Revisions

The differences between the revisions are described below:

Revision	Output date	Previous changes
E1		First version

Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Area	Instructions		
Initialize and reset LIN interfaces	P2_LIN_Init		
	P2_LIN_Init_Write		
	P2_LIN_Init_Apply		
	P2_LIN_Reset		
Query LIN interface version	P2_LIN_Get_Version		
Read or send data	P2_LIN_Read_Dat		
Send LIN header	P2_LIN_Msg_Write		
Send Lin header	P2_LIN_Msg_Transmit		
Set module LED	P2_Check_LED		
	P2_Set_LED		
	P2_LIN_Set_LED		

The LIN interfaces of the module are implemented according to spezification "LIN 2.1" (Local Interconnect Network) of november 2006. You program the LIN interfaces with *ADbasic* instructions.

LIN is a serial communication protocol on a one-wire bus with a transfer rate of up to 20 KiBit/s. The bus efficiently supports the control of mechantronic nodes in distributed automotive applications.

Messages sent via LIN bus are data packets with up to 8 bytes payload, which are characterized by so-called identifiers. The management of bus messages is effected by 64 message boxes.

The bus concept refers to a single master node with multiple slave nodes. The master controls the total data transfer of the bus: Before each data packet the master sends a header with the identifier of the next data packet. Then, only this bus node will react (which can also be the master node itself) which manages a message box with the given identifier. Thus, this node will send a data packet to or receive a data packet from the LIN bus.

5.8.7 Pro II-Profi-SL Rev. E

The module Pro II-Profi-SL Rev. E provides a fieldbus node with the functionality of a Profibus slave. All settings are done via software.

Functions description

After power-on the fieldbus node must be initialized. The initialization determines the station address (slave node address) on the profibus as well as the size of the input and output areas.

There is a range each for data input and data output; each range has a maximum size of 76 bytes. Please note, that the terms "input" and "output" are used as the fieldbus controller sees them.

You set the number and length of input and output areas separately.

Hardware

The pin assignment of the 9-pin DSUB connector refers to DIN E 19245, part 3.

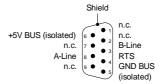


Fig. 141 - Pro II-Profi-SL Rev. E: Pin assignment

The Profibus has to be terminated at its physical beginning and at the end of its segments by an active terminator.

If required, you have to add the terminator yourself at the appropriate data lines of the fieldbus node or use an appropriate connector with integrated terminator.

Above and below the DSUB connector there are two LEDs, which display the operation status of the fieldbus node: operation mode (OP) and interface status (ST).

LED	Status	Meaning
OP	off	Offline or no power.
	green	Fieldbus node online, data exchange.
	flashing green	Fieldbus node online, status clear.
	flashing red, 1 flash	Error: Input/output configuration does not fit to master configuration.
	flashing red, 2 flashes	Error in Profibus configuration.
ST	off	Offline or no power.
	green	initialized.
	flashing green	initialized, diagnostiv event(s) present.
	red	Exception error.

Fig. 142 - Pro II-Profi-SL Rev. E: Meaning of LEDs

Projecting the Profibus

You are projecting the Profibus with a configuration tool suitable for the bus master. The following process description uses a Profibus master of the Hilscher company and the appropriate program SyCon.

The process description is valid for other configuration tools, correspondingly. Look for the exact process description of bus projection in the documentation of the configuration tool.

Copy or import the GSD file hmsb1811.gsd of the fieldbus node from
 C:\ADwin\Fieldbus\Profibus into the source directory of the configuration tool.

The configuration tool loads all required information about the new slave from the appropriate GSD file; the file content is determined by EN 50170. Afterwards, the slave can be accessed by any master.

Copy the GSD file

Pro II: Extension and Interface Modules Pro II-Profi-SL Rev. E

 In the configuration tool, add the Slave, i.e. the fieldbus node to the Profibus by selecting the GSD file hmsb1811.gsd. The station address must equal the address used for *ADbasic* initialization with P2_Init_Profibus. Integrate the Slave

Afterwards the bus could be structured as below:

 Configure number and length of input and output data of input and output data in the fieldbus node memory one by one.

Please note the following rules:

- The terms "input" and "output" have reverse meanings in *ADbasic* (slave) and in the configuration tool (master).
- Configure the outputs (as seen from the master) first and then the inputs. If there are inputs initialized in *ADbasic*, you have to configure outputs as correspondent in the configuration tool.
- Number and length of data ranges must equal the data used for ADbasic initialization with P2_Init_Profibus.
- You may use only a single data length for each input data and output data. Input and output data can be set to a length of 1, 2, 4 or 8 Byte (2 byte = 1 word).

The following example line in *ADbasic* configures the slave with 2 inputs of 1 byte and 3 outputs of 1 byte.

Par_31 = P2_Init_Profibus(2, 2, 1, 3, 1, conf_Arr, Data_1)

To configure the slave correctly in the configuration tool you have to set the 2 outputs first and the 3 inputs afterwards (1 byte each). The graphic below shows this example configuration:

lave Configuration							
General Device Anybus Compa	ctCom DPV	1 (FW 2.x)	Statio	ın addr	ess 4		<u>D</u> K
Description ADwinProll							Cancel
 Activate device in actual c Enable watchdog control 	onfiguration	GSD f	ile H	IMSB1	B11.GSD		Parameter Data
Max. length of in-/output data	152 Byte	-	h of in-/ou			Byte	DPV1 Settings
Max. length of input data Max. length of output data Max. number of modules	152 Byte 152 Byte 152	Lengt	h of input h of outpu er of modu	t data	3 2 5	Byte Byte	Assigned master Station address 0 Master0
Module	Inputs	Outputs	In/Out	Ider	ntifier	~	0 / CIF30-DPM / CIF104-D 🔻
Input 1 byte	l Byte			0x90)		
Input 1 word	l Word			0xD()		- Actual slave
Input 2 words	2 Word			0xD:			Station address 4
Input 4 words	4 Word			0xD3	3		ADwinGoldII
Output 1 byte		l Byte		0xA0)		4 / Anybus CompactCom D 💌
Output 1 words		1 Word		OxEC)	*	
Slot Idx Module Symbo		I Addr.	I Len.		0 Addr.	0 Le:	n. Append Module
1 1 Output 1 Modul				QB	0	1	
2 1 Output 1 Modul				QB	1	1	<u>R</u> emove Module
3 1 Input 1 Modul		0	1				Insert Module
4 1 Input 1 Modul		1	1				
5 1 Input 1 Modul	e5 IB	2	1				Predefined Modules

Module Revisions

The differences between the revisions are described below:

Revision	Output date	Previous changes
E1	July 2008	First version

Configure the Slave

Programming with ADbasic

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Area	Instructions
Initialize station address and data ranges	P2_Init_Profibus
Read and write data	P2_Run_Profibus

Initialization must be run with low priority since it takes some seconds; if it were a process with high priority, the PC interrupts the communication after a time (time-out). For the same reason, reading and writing data should be run with low priority.

Specifications

The fieldbus node is in agreement with the European Standard EN 50170, Volume 2. This norm is provided by the Profibus user organization:

Profibus Nutzerorganisation e.V. Haid-und-Neu-Str. 7 76131 Karlsruhe, Germany Phone: +49-72196-58590 Fax : +49-72196-58589 Order number: 0.042

Operating modes of fieldbus node The following table shows the operating modes, the fieldbus node supports and its behavior:

Operating mode	Behavior
Operate	The Profibus slave is part of the cyclic data exchange. Input data are transferred to the master via bus and output data are made ready for the master to transfer them.
Clear	The inputs are updated and the outputs are set to zero.
Stop	The slave is no longer part of the bus communication.

Fig. 143 – Pro-Profi-SL Rev. E: Operating modes

5.8.8 Pro II-MIL-1553 Rev. E

The module Pro II-MIL-1553 Rev. E provides a multi-function interface for the MIL-STD-1553 bus. Currently, each MIL interface can be configured as bus monitor in SMT 16-bit mode (simple monitoring terminal). Other modes as bus controller, remote terminal, or other bus monitor modes can be configured by setting appropriate device registers.

MIL-STD-1553 Interface

The MIL interfaces of the module are implemented according to specification MIL-STD-1553B. The module is based on the MIL multi-terminal HI-6130.

You program the SMT mode of the MIL interfaces with *ADbasic* instructions. For other modes, set the appropriate registers using the separate documentation "HI-6130 / MIL-STD-1553 / BC/MT/RT Multi-Terminal Device" by Holt Integrated Circuits Inc.

MIL-STD-1553 is a serial data bus, commonly used in spacecraft on-board data handling subsystems, both military and civil. The bit transfer rate is 1.0 megabit per second.

The bus concept refers to a single Bus Controller (BC) with multiple Remote Terminals (RT) as slave nodes. Additionally, there may also be one or more Bus Monitors (BM) which do not to take part in data transfers, and are only used to capture or record data.

All transmissions onto the data bus are accessible to the BC and all connected RTs. Messages consist of one or more 16-bit words (command word, data words, or status word). The 16 bits comprising each word are transmitted using Manchester code.

The BC controls the total data transfer of the bus, using commands from the BC to the RTs to receive or transmit.

Before each data packet the BC sends a header with the identifier of the next data packet. Then, only this bus node will react (which can also be the master node itself) which manages a message box with the given identifier. Thus, this node will send a data packet to or receive a data packet from the MIL bus.

An application or function in the subsystem behind the RT interface (e.g. RT1) writes the data that is to be transmitted into a specific (transmit) sub-address.

If configured as bus monitor in SMT mode, the module stores message commands, terminal respones and message data of the MIL bus.

The SMT can utilize 16-bit time tags with a range of clocking options.

After power-up, the SMT records every message on the MIL bus. You can set filters to select messages for monitoring. The filters are based on each command's RT address and subaddress, and the transmit/receive bit status.

The SMT monitor stores a message in 2 separate buffers:

- Command buffer: contains 4 words for each MIL message.
 - Command word of the BC that initiated the message.
 - For an RT-RT message, the Receive command word is stored here; Transmit command word 2 is the first stored word in the data buffer.
 - Pointer to the words of the message in the data buffer; not required, since the *ADbasic* instruction returns the message data.
 - Time tag (16 bit) of the message.

MIL bus

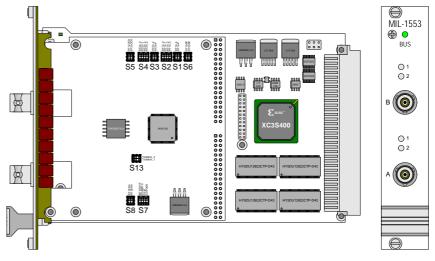
SMT mode

- SMT block status word, additional information about message status, the used bus A/B and possibly occurred errors.
- Data buffer: Data words of the message.

The number of words for each message depends on the MIL message type, ranging from zero (broadcast mode command without data) to 35 words (for a 32 data word RT-RT command).

The information of the recently stored message can be read using **P2_MIL_ SMT_Message_Read**. The instruction returns the message data in 2 arrays: array 1 contains 4 words of the command buffer, array 2 contains the data words of the data buffer.

You can only read the most recent message information. As soon as a new MIL message is completely received and stored, any previous message information is lost.


Hardware design

The front panel provides 2 concentric 3-lug triax bayonet jacks which are referred to as "Bus A" and "Bus B". For each connector there are 2 programmable LEDs.

The board contains several DIP switches (S1...S8, S13), which are required only for the use of the interface as bus controller or remote terminal. With SMT mode, all DIP switches should be set to OFF position.

Non suitable DIP switch settings can cause hardware damage. If you need to change the settings please contact the support of Jäger Messtechnik; you find the address on the inner side of the cover page of the manual.

DIP switch no.	DIP	setting in SMT mode	DIP switch no.	DIP	setting in SMT mode
S 5	RT1LOCK	OFF	S6	RT1SSF	OFF
S 5	RT2LOCK	OFF	S6	RT2SSF	OFF
S2	RT1A_0	OFF	S4	RT2A_0	OFF
S2	RT1A_1	OFF	S4	RT2A_1	OFF
S2	RT1A_2	OFF	S4	RT2A_2	OFF
S2	RT1A_3	OFF	S4	RT2A_3	OFF
S1	RT1A_4	OFF	S3	RT2A_4	OFF
S1	RT1AP	OFF	S3	RT2AP	OFF

DIP switch no.	DIP	setting in SMT mode	DIP switch no.	DIP	setting in SMT mode
S8	RT1ENA	OFF	S13	TXINHA_1	OFF
S8	RT2ENA	OFF	S13	TXINHA_2	OFF
S7	MTSTOFF	OFF			
S7	RAMEDC	OFF			
S7	TEST	OFF			
S7	AUTOEN	OFF			

You find a description of the DIP switches in the separate documentation "HI-6130 / MIL-STD-1553 / BC/MT/RT Multi-Terminal Device" by Holt Integrated Circuits Inc.

Module Revisions

The differences between the revisions are described below:

Revision	Output date	Previous changes
E1	Dec. 2012	First version

Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Area	Instructions
Initialize and reset MIL bus interfaces	P2_MIL_Reset P2_MIL_SMT_Init
SMT: Read bus message	P2_MIL_SMT_Message_Read
Set SMT filters	P2_MIL_Set_All_Filters P2_MIL_Set_Filter
Set module LEDs	P2_Check_LED P2_Set_LED P2_MIL_Set_LED
Set / read register of the MIL interface	P2_MIL_Set_Register P2_MIL_Get_Register

5.8.9 Pro II-ARINC-429 Rev. E

The module Pro II-ARINC-429 Rev. E provides an interface for the ARINC 429 serial bus with one transmitter and 2 receivers. Transmitter and receivers can be run in parallel at the same time.

ARINC 429 interface

The interface of the module is implemented according to specification ARINC 429. The module is based on the interface HI-3582A by Holt Integrated Circuits Inc.

You program the ARINC interface with ADbasic or TiCoBasic instructions.

ARINC 429 is a two-wire serial bus and the most widely used data bus standard for aviation. The bus operates with one transmitter and up to 20 receivers. The bit transfer rate is 100 kBit/s (high speed) or 12.5 kBit/s (low speed).

ARINC 429 uses a self-clocking, self-synchronizing data bus protocol; Tx (transmit) and Rx (receive) are on separate ports. The physical connection wires are twisted pairs, named A and B.

Data can be transmitted in one direction only–simplex communication–with bidirectional transmission requiring two channels or buses. The devices, line replaceable units (LRU), are most commonly configured in a star or bus-drop topology. Each LRU may contain multiple transmitters and receivers communicating on different buses.

Data words on the bus are 32 bits in length, and most messages consist of a single data word. The transmitter constantly transmits either 32-bit data words or the NULL state while receivers are monitoring the bus messages.

An ARINC 429 data word consists of 32 bits in 5 fields:

- label, 8 bits
- source/destination identifier (SDI), 2 bits
- data, 19 bits
- sign/status matrix (SSM), 2 bits
- parity, 1 bit

Module features

The module Pro II-ARINC-429 Rev. E provides one transmitter and 2 receivers, each of which using its own Fifo. Each Fifo can store 32 words maximum.

The module Pro II-ARINC-429 Rev. E provides the following features:

Transmitter parity check

The transmitter parity check can be disabled. If enabled, the parity check can set to even parity or odd parity.

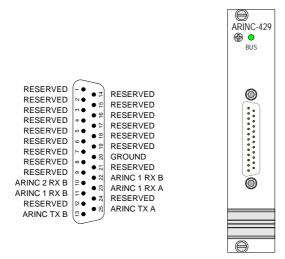
Please note, that module receivers will always check for odd parity. Receiver parity check cannot be disabled.

Label matching

Each of the 2 receivers can be programmed with up to 16 labels. If enabled, a receiver will only accept ARINC messages which match one of the programmed labels. Only accepted messages are copied to the receiver fifo.

Label matching can be enabled for each receiver independently.

- SDI decoding


Each of the 2 receivers can be programmed with an SDI value. If SDI decoding is enabled, a receiver will only accept ARINC messages which match the set SDI value. Only accepted messages are copied to the receiver fifo.

SDI decoding can be enabled for each receiver independently.

SDI decoding and label matching can be enabled independently. If both are enabled, an incoming value must match both conditions to be accepted.

Hardware design

The front panel provides a 25-pin D-Sub plug.

Fig. 145 - Pro II-ARINC-429 Rev. E: Pinout and front panel

Function	ARINC 429 interface with 1 transmitter, 2 receivers
Bit transfer rate	Selectable: 100 kBit/s (high speed) or 12.5 kBit/s (low speed)
Interface based on	HI-3582A by Holt Integrated Circuits Inc.
TiCo	Prozessor type: TiCo1 Clock rate: 50MHz Memory size: 28kiB PM internal, 28kiB DM internal.
Connector	25-pin D-Sub female connector

Fig. 146 – Pro II-ARINC-429 Rev. E: Specification

Module Revisions

Revision	Output date	Previous changes
E1	Mar. 2013	First version

Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

Programming in ADbasic

The include file <code>ADwinPro_All.inc</code> contains instructions for the following functions:

Function	Instructions
Reset and configure the ARINC-429 bus interface	P2_ARINC_Reset P2_ARINC_Config_Transmit P2_ARINC_Config_Receive P2_ARINC_Set_Labels
Transmit a message	P2_ARINC_Transmit_Enable P2_ARINC_Transmit_Fifo_Full P2_ARINC_Transmit_Fifo_Empty P2_ARINC_Write_Transmit_Fifo ARINC_Create_Value32
Receive a message	P2_ARINC_Receive_Fifo_Empty P2_ARINC_Read_Receive_Fifo ARINC_Split_Value32
Set module LEDs	P2_Check_LED P2_Set_LED

Programming in TiCoBasic

The module can be programmed with *TiCoBasic* instructions. The instructions are described in *TiCoBasic* online help.

The include file ARINC_TiCo.inc contains instructions for the following functions:

Function	Instructions
Reset and configure the	ARINC_Reset
ARINC-429 bus interface	ARINC_Config_Transmit
	ARINC_Config_Receive
	ARINC_Set_Labels
Transmit a message	ARINC_Transmit_Enable
	ARINC_Transmit_Fifo_Full
	ARINC_Transmit_Fifo_Empty
	ARINC_Write_Transmit_Fifo
	ARINC_Create_Value32
Receive a message	ARINC_Receive_Fifo_Empty
	ARINC_Read_Receive_Fifo
	ARINC_Split_Value32
Set module LEDs	Check_LED
	Set_LED

Programming TiCo access

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par, P2_
	Get_Par_Block
	P2_SetData_Long, P2_Set_Par, P2_
	Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full

Function	Instructions
Control <i>TiCo</i> processor	P2_TiCo_Reset, P2_TiCo_Start, P2_ TiCo_Stop P2_Get_TiCo_Bootloader_ Status
	P2_Get_TiCo_Status, P2_Workload
Control <i>TiCo</i> processes	P2_Process_Status P2_TiCo_Get_Processdelay P2_TiCo_Set_Processdelay P2_TiCo_Start_Process P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.8.10 Pro II-FlexRay-2 Rev. E

The module Pro II-FlexRay-2 Rev. E is euqipped with 2 FlexRay interfaces, each interface represents a complete FlexRay bus with 2 channels.

The module can be configured to start a FlexRay bus without any other bus members. To do so, both FlexRay interfaces have to run as coldstarter nodes and the interfaces have to be combined to a FlexRay bus via DIP switches.

You can also set the bus termination for each interface and channel via DIP switch.

The description of the FlexRay module is divided into the following sections:

- FlexRay Controller
- Hardware
- Module Revisions
- Programming

FlexRay Controller

The module Pro II-FlexRay-2 is equipped with two FlexRay controllers MFR4310 from FreeScale[®] and runs according to the "FlexRay Communications System Protocol Specification V2.1". You program the interfaces with *ADbasic* instructions which directly access the controller registers.

For configuration and status display of the FlexRay controllers you use the appropriate registers. Here you can set all FlexRay parameters as e.g. bus speed, bus timing, etc.

You find more information on the web site http://www.freescale.com in the following documentations from FreeScale[®]:

- Engineering Bulletin EB683: MFR4310 and MFR4310 differences
- Data sheet MFR4300: MFR4300 FlexRay Communication Controller

Hardware

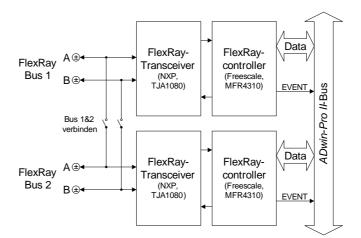


Fig. 147 - Pro II-FlexRay-2 Rev. E: Block diagram

The connections of the FlexRay interfaces are provided on a 9-pole DSUB connector; the pin assignment is shown below.

reserviert BM Channel B GND BM Channel A	4 • • 9 3 • • 8 3 • • 7	reserviert BP Channel B BP Channel A
reserviert		reserviert

Fig. 148 - Pro II-FlexRay-2: Pin assignment

If an interface runs as physical end of a FlexRay bus, the bus bus must be terminated at this interface with the appropriate DIP switch (see fig. 149); the channels A and B can be terminated separately. Since both channels are run differential, you always have to switch both (!) DIP switches for each channel to the right for termination.

If the FlexRay module is not located at the end of the bus you may not terminate the interface.

Both FlexRay interfaces can be combined to a startable FlexRay cluster via DIP swithces. For combination of the channels A and B you always have to switch both (!) DIP switches for each channel upwards (see fig. 149).

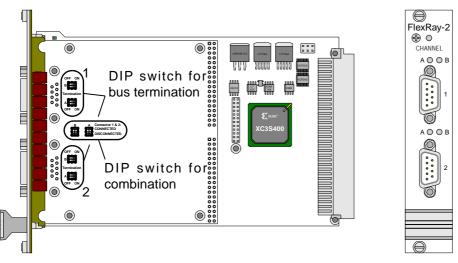


Fig. 149 - Pro II-FlexRay-2 Rev. E: PCB and front panel

Module Revisions

The differences between the revisions are described below:

Revision	Output date	Previous changes
E1	08 / 2009	First version

Programming

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ${\tt ADwinPro_All.inc}$ contains instructions for the following functions:

Area	Instructions
Initialize a FlexRay interface	P2_FlexRay_Init
Reset a FlexRay controller	P2_FlexRay_Reset
Query interface version	P2_FlexRay_Get_Version
Set and read controller register	P2_FlexRay_Read_Word P2_FlexRay_Write_Word
Set module LED	P2_Check_LED P2_Set_LED P2_FlexRay_Set_LED

5.8.11 Pro II-EtherCAT-SL Rev. E

The module Pro II-EtherCAT-SL Rev. E provides a fieldbus node with the functionality of an EtherCAT slave. All settings are done via software.

Functions description

After power-on you must initialize the fieldbus node in *ADbasic*. The initialization determines the size of the input and output areas.

There is a range each for data input and data output; each range has a size of 16 Longs or 64 bytes. Please note, that the terms "input" and "output" are used as the fieldbus controller sees them.

Hardware

The interface has a plug connector of type RJ45 for both data input (IN) and data output (OUT). Each connector has a LED "Link / Activity" top right, which displays the operating status of the node in the EtherCAT bus. The two other LEDs (at the bottom of the plug) have no function.

 \bigcirc

Underneath the connectors there are LEDs displaying the status of the LEtherCAT state machine (RUN) and the occurrence of communication errors (ERR).

LED	Status	Meaning
Link /	off	Offline (or no power).
Activ- ity	green	Fieldbus node online, no data exchange.
ICY	green, flickering	Fieldbus node online, with data exchange.
RUN	off	Status INIT: interface being initialized (or no power).
	blinks green	Status PRE-OP: Interface has contact to bus master.
	flashs green once	Status SAFE-OP: Interface can read data from the bus, but not send.
	green	Status OP: Interface is completely ready, inputs and outputs are active.
	red	Status EXCEPTION.
ERR	off	No error (or no power).
	blinks red	Invalid configuration.
	flashs red once	Local error in the interface; EtherCAT status has been changed.
	flashs red twice	Application watchdog timeout.
	red	Critival communication error.

Fig. 150 – Pro II-EtherCAT-SL Rev. E: Meaning of LEDs

If both LEDs RUN and ERR turn red, a serious error has occurred in the interface. Please inform the support of Jäger Messtechnik; you find the address on the inner side of the cover page of the manual.

Projecting the EtherCAT bus

You are projecting the EtherCAT bus with a configuration tool suitable for the bus master. The following process description uses the program "TwinCAT System Manager" of the Beckhoff company as EtherCAT bus master.

The process description is valid for other configuration tools, correspondingly. Look for the exact process description of bus projection in the documentation of the configuration tool.

- Copy the description files *.xml of the fieldbus node from C:\ADwin\Fieldbus\EtherCAT into the root directory of the configuration tool.

Upon start-up, the configuration tool loads the required information about the new slave from the appropriate description file.

- Add the ADwin-EtherCAT slave as bus member to the EtherCAT bus.

Using TwinCAT System Manager, you mark the EtherCAT master and select the menu entry Scan boxes from the context menu (right mouse click). A list of all current bus members will be displayed.

 Select the ADwin-EtherCAT slave from the list; now the slave is confiremd as bus member.

Afterwards the bus could be structured as below:

 Configure the ADwin-EtherCAT slave in an ADbasic program using the instruction P2_ECAT_Init.

Though you can configure the slave from the configuration tool as well, the configuration in *ADbasic* has to be processed nevertheless–using the very same settings.

- Read the configuration into the configuration tool.

Using the TwinCAT System Manager, you mark the *ADwin*-EtherCAT slave and clicken the button Load PDO Info from the device.

The slave configuration is in any case as follows: 16 DINT (4 byte) as inputs and 16 DINT (4 byte) as outputs.

Module revisions

The difference between the revisions is described below:

Revision	Release date	Previous changes
E	12/2009	First version

The module revision is to be found on the front cover.

Programming with ADbasic

The module is comfortably programmed with *ADbasic* instructions. The instructions are described in *ADbasic* online help and in the Pro II Software manual.

The include file ADwinPro_All.inc contains instructions for the following functions:

Area	Instructions
Initialize station address and data ranges	P2_ECAT_Init
Get current interface version and operation	P2_ECAT_Get_Version
mode	P2_ECAT_Get_State
Read and write data in groups of 16 longs.	P2_ECAT_Read_Data_16L
	P2_ECAT_Write_Data_16L

Initialization must be run with low priority since it takes some seconds; if it were a process with high priority, the PC interrupts the communication after a time (time-out). For the same reason, reading and writing data should be run with low priority. Specifications The fieldbus node is in agreement with the international standard IEC 61158 and IEC 61784-2. More information is provided by the EtherCAT user organization: EtherCAT Technology Group Ostendstraße 196 D-90482 Nürnberg Tel.: +49 9115405620 Fax: +49 9115405629 http://www.ethercat.org/ **Operating modes of** The following table shows the operating modes, the EtherCAT node supports and its EtherCAT node behavior: Operating Behavior mode Init The EtherCAT slave is being initialized by the bus master. PreOp The interface is part of the data exchange, inputs and outputs are not active. SafeOp The interface can receive data, outputs are not active. The interface is completely ready; inputs and outputs are active. Ор Fig. 151 - EtherCAT: Operating modes

5.8.12 Pro II-SENT-4 Rev. E

The module Pro II-SENT-4 Rev. E provides 4 input channels using the SENT protocol (Single Edge Nibble Transmission) and analyzes the incoming SENT signals on all 4 channels automatically.

The description of the SENT module is divided in the following sections:

- Hardware design
- Working with SENT
- Modul revision
- Programming

SENT channels	4 inputs
Signal voltage	Low level < 0.5V, High level > 4.1V
Supply voltage	5V
Clock tick range	3µs90µs
Connector	37-pin D-Sub female connector

Fig. 152 - Pro II-SENT-4 Rev. E: Specification

Hardware design

The module Pro II-SENT-4 Rev. E works according to the specification SAE J2716. You find further information on the web site http://standards.sae.org of SAE International[®].

The connections of the SENT interface are on the 37-pin D-SUB connector; the pin assignment is shown below.

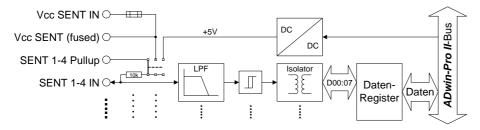
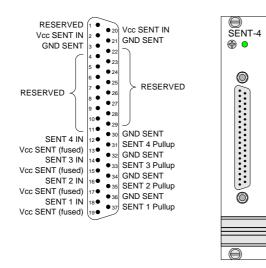
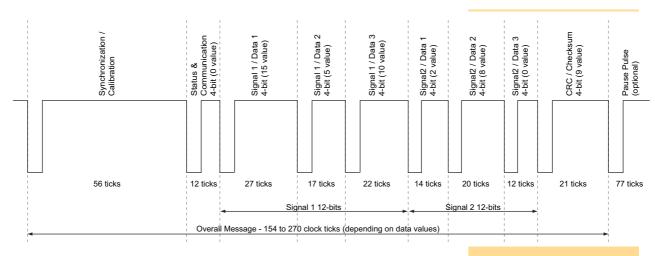



Fig. 153 - Pro II-SENT-4 Rev. E: Block diagram

Supply voltage	Via the pins Vcc SENT In you can insert a supply voltage 5 Volt of up to 400mA; the pins Vcc SENT In are connected to each other. The voltage is provided on the 4 voltage output pins Vcc SENT (fused) and also can be used as pull-up-voltage (see below). A fuse of 500mA is placed between voltage inputs and outputs.
Pull-up signal	The SENT channels can connected to a pull-up-signal in different ways. You select the connection by setting a jumper on the circuit board: – A DC/DC converter on the module provides a common pull-up voltage
	 of 5 Volt. The external voltage supply Vcc SENT In is also used as common pull- up voltage.
	 External input of pull-up voltage via the inputs SENT 14 Pullup. There is a separate input for each SENT channel.
	The pull-up voltages shall be 5 Volt.
	On the printed circuit board there are 3 spare jumpers (see fig. 155, bottom left), if one of the pull-up-jumpers gets lost.
	DC-/DC converter Vcc SENT In SENT 4 Pullup UCC SENT In SENT 1 Pullup
	spare jumpers

Fig. 155 - Pro II-SENT-4 Rev. E: Jumper positions on the printed circuit board

Working with SENT


The SENT protocol works as point-to-point connection which transfers signal values from a sensor to a controller. A SENT message consists of 9 or 10 pulses:

- 1 calibration pulse for synchronization _
- 1 nibble pulse (1 nibble = 4 bit): Status and communication, contains _ amongst others 1...2 bits of the serial message.
- 3 nibble pulses: first 12 bit value of the sensor _
- 3 nibble pulses: second 12 bit value of the sensor
- 1 nibble pulse: CRC checksum of the data pulses _
- optionally 1 pause pulse

Terminology

Detection mode

The length of pulses and SENT messages is measured in clock ticks. The clock tick can have a length of $1,5\mu$ s...90 μ s.

A serial message consists of an ID, a data value and a CRC checksum. The sending format (standard, enhanced 1, enhanced 2) determines the number of bits for ID and data value. Serial messages are sent distributed to several SENT messages, only 1...2 bits per message.

Several (up to 32) serial messages form a message set. The message set is transferred cyclically.

After power-up all input channels are set to detection mode, where incoming SENT signals are being analyzed. As soon as the module detects the clock tick and number of pulses of SENT messages, it sets the appropriate input channel to read mode.

Alternatively, you can set the number of pulses and the clock tick of an input channel manually via software. With setting the clock tick, the input channel is set to read mode without further checks.

You can switch an input channel from read mode back to detection mode via software. This can be useful after changing the SENT sensor.

With read mode, the module evaluates the SENT signal of the input channels continuously and provides the contained data to be read:

- Signals 1 and 2 (fast channel) and the result of the CRC check.

A possible pause pulse of the SENT signal is automatically detected.

 ID and data value of a serial message (slow channel) and the result of the CRC check.

The following serial message formats are detected:

- short serial message format: 4 bit ID + 8 bit data value.
- enhanced serial message format:
- 8 bit ID + 12 bit data value or 4 bit ID + 12 bit data value.

You can either read single serial messages consecutively or a complete message set at once. A message set contains the recently received data value and the number of received messages for each ID.

 Only on request the module collects all data of the next SENT message in a latch buffer, from where you can afterwards read the data set. This ensures that all data belong to the same SENT message.

The data set contains amongst others all 8 nibbles as well as the time when the SENT message was received.

Checking timeout	You can query whether an input channel continuously receives SENT mes- sages or not: As long as the return value of P2_SENT_Get_Msg_Counter keeps changing, new SENT messages are being received on the input chan- nel.
CRC mode	With P2_SENT_Set_CRC_Implementation the CRC check can be switched from calculation algorithm "legacy" to "recommended".
	The calculation algorithm refers to both signals 1 and 2 as well as to the serial message.
Setting sensor type	 With P2_SENT_Set_Sensor_Type the expected sensor type of a SENT signal is set. The module then checks the incoming signals whether they also apply to the criteria of the selected sensor type, according to SENT specification. If not, an error ID can be queried. At the moment, the sensor types "throttle position sensor" and "single secure sensor" are supported.
	Modul revision

Differences between revisions are described below. The revision number is located on the front panel.

Revision	Output date	Changes to previous revision
E01	06 / 2012	First version
E02	10 / 2013	Change of input circuitry from "Legacy SENT Sys- tem Interface Circuit Topology" (SENT Spec. Fig. 6.3.3) to "Recommended Sent System Interface Circuit Topology" (SENT Spec. Fig. 6.3.4)
E03	11 / 2013	Piggyback card with wiring variants.

Different revision characters mean different module characteristics and are documented separately. A counter number is added for internal purpose.

The interface version is not visible from outside but can be queried by software:

Software version	Output date	Changes to previous version
10	06 / 2012	First official version
11	07 / 2012	Setting of CRC mode.
12	08 / 2012	Setting the sensor type of a channel according to SENT sepcification.
13	08 / 2012	Setting pause pulse of a SENT signal.
14	09 / 2013	Read all serial messages at once.
16	09 / 2013	Reset collected serial messages.
17	11 / 2013	New latch buffer.
18	1 / 2014	Changes in latch buffer.

Programming

The module is programmed comfortably with *ADbasic* instruction. The instructions are described in the Pro II software manual and in the online help of *ADbasic*.

Please note: For some commands you have to check with **P2_SENT_Command_Ready**, whether the SENT interface is ready to process the next command. Such commands are marked in the following table with *.

The include file ADwinPro_All.inc contains the following instructions:

Bereich	Befehle
Query interface version	P2_SENT_Get_Version
Initialize interface	P2_SENT_Init
Command processing	P2_SENT_Command_Ready
Read SENT parameter	P2_SENT_Get_ChannelState
	P2_SENT_Get_ClockTick
	P2_SENT_Get_PulseCount
Set SENT parameter	P2_SENT_Set_CRC_Implementation*
	P2_SENT_Set_Detection*
	P2_SENT_Set_ClockTick*
	P2_SENT_Set_PulseCount*
	P2_SENT_Set_Sensor_Type*
Read SENT signals	P2_SENT_Get_Fast_Channel1
(fast channel)	P2_SENT_Get_Fast_Channel2
	P2_SENT_Get_Fast_Channel_CRC_OK
Read SENT serial message	P2_SENT_Get_Serial_Message_Id
(slow channel)	P2_SENT_Get_Serial_Message_Data
	P2_SENT_Get_Serial_Message_CRC_OK
	P2_SENT_Get_Serial_Message_Array
	P2_SENT_Clear_Serial_Message_
	Array
Collect SENT message	P2_SENT_Request_Latch*
via latch buffer	P2_SENT_Check_Latch
	P2_SENT_Get_Latched_Data
Check for timeout	P2_SENT_Get_Msg_Counter
Set module LED	P2_Check_LED, P2_Set_LED

5.8.13 Pro II-SENT-6 Rev. E

The module Pro II-SENT-6 Rev. E provides 6 input channels using the SENT protocol (Single Edge Nibble Transmission) and analyzes the incoming SENT signals on all 4 channels automatically. Additionally there are 4 digital inputs and 4 digital outputs with TTL levels.

The description of the SENT module is divided into the following sections:

- Hardware design
- Working with SENT
- Digital channels
- Modul revision
- Programming

SENT Interface			
SENT channels	6 inputs		
Signal voltage	Low level < 0.5V, High level > 4.1V		
Supply voltage	5V		
Clock tick range	3µs90µs		
Digital Channels			
Digital channels	4 inputs, 4 outputs; TTL logic		
Pull-Down resistor	10kΩ		
V _{IH}	min. 2V		
V _{IL}	max. 0.8V		
I _{IH}	max. 1µA		
IIL	max. 0.01mA		
Spannungsbereich	-0.5V +5.5V		
Ausgangsstrom	max. ± 35 mA per channel, max. ± 70 mA per block (4 channels) via V _{CC} or GND		
General			
Connector	37-pin D-Sub female connector		

Hardware design

The module Pro II-SENT-6 Rev. E works according to the specification SAE J2716. You find further information on the web site http://standards.sae.org of SAE International[®].

The connections of the SENT interface are on the 37-pin D-SUB connector; the pin assignment is shown below.

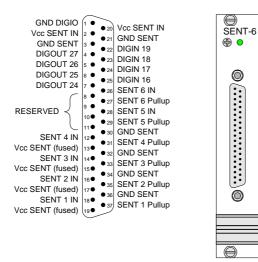



Fig. 157 – Pro II-SENT-6 Rev. E: Block diagram

Via the connected pins Vcc SENT In, you can insert a supply voltage 5 Volt of up to 400mA. The voltage is provided on the 4 voltage output pins Vcc SENT (fused) and also can be used as pull-up-voltage (see below). A fuse of 500mA is placed between voltage inputs and outputs.

The SENT channels can connected to a pull-up-signal in different ways. You select the connection by setting a jumper on the circuit board:

- A DC/DC converter on the module provides a common pull-up voltage of 5 Volt.
- The external voltage supply Vcc SENT In is also used as common pullup voltage.
- External input of pull-up voltage via the inputs SENT 1...6 Pullup. There is a separate input for each SENT channel.

The pull-up voltages shall be 5 Volt.

On the printed circuit board there are 3 spare jumpers (see fig. 159, bottom left), if one of the pull-up-jumpers gets lost.

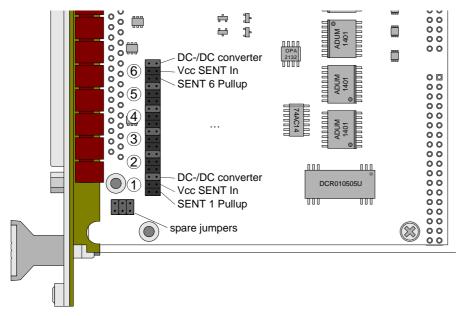


Fig. 159 - Pro II-SENT-4 Rev. E: Jumper positions on the printed circuit board

Supply voltage

Pull-up signal

	Working with SENT
Terminology	The SENT protocol works as point-to-point connection which transfers signal values from a sensor to a controller. A SENT message consists of 9 or 10 pulses:
	 1 calibration pulse for synchonization
	 1 nibble pulse (1 nibble = 4 bit): Status and communication, contains amongst others 12 Bits of the serial message.
	 3 nibble pulses: first 12 bit value of the sensor
	 3 nibble pulses: second 12 bit value of the sensor
	 1 nibble pulse: CRC checksum of the data pulses
	 optionally 1 pause pulse
	The length of pulses and SENT messages is measured in clock ticks. The clock tick can have a length of 3μ s 90μ s.
	A serial message consists of an ID, a data value and a CRC checksum. The sending format (standard, enhanced 1, enhanced 2) determines the number of bits for ID and data value. Serial messages are sent distributed to several SENT messages, only 12 bits per message.
	Several (up to 32) serial messages form a message set. The message set is transferred cyclically.
Detection mode	After power-up all input channels are set to detection mode, where incoming SENT signals are being analyzed. As soon as the module detects the clock tick and number of pulses of SENT messages, it sets the appropriate input channel to read mode.
	Alternatively, you can set the number of pulses and the clock tick of an input channel manually via software. With setting the clock tick, the input channel is set to read mode without further checks.
	You can switch an input channel from read mode back to detection mode via software. This can be useful after changing the SENT sensor.
Read mode	With read mode, the module evaluates the SENT signal of the input channels continuously and provides the contained data to be read:
	 Signals 1 and 2 (fast channel) and the result of the CRC check.
	A possible pause pulse of the SENT signal is automatically detected.
	 ID and data value of a serial message (slow channel) and the result of the CRC check.
	 The following serial message formats are detected: short serial message format: 4 bit ID + 8 bit data value. enhanced serial message format: 8 bit ID + 12 bit data value or 4 bit ID + 12 bit data value.
	You can either read single serial messages consecutively or a complete message set at once. A message set contains the recently received data value and the number of received messages for each ID.
	 Only on request the module collects all data of the next SENT message in a latch buffer, from where you can afterwards read the data set. This ensures that all data belong to the same SENT message.
	The data set contains amongst others all 8 nibbles as well as the time when the SENT message was received.
Checking timeout	You can query whether an input channel continuously receives SENT mes- sages or not: As long as the return value of P2_SENT_Get_Msg_Counter keeps changing, new SENT messages are being received on the input chan- nel.

CRC mode With **P2_SENT_Set_CRC_Implementation** the CRC check can be switched from calculation algorithm "legacy" to "recommended". The calculation algorithm refers to both signals 1 and 2 as well as to the serial message. Setting sensor type With **P2_SENT_Set_Sensor_Type** the expected sensor type of a SENT signal is set. The module then checks the incoming signals whether they also apply to the criteria of the selected sensor type, according to SENT specification. If not, an error ID can be gueried. At the moment, the sensor types "throttle position sensor" and "single secure sensor" are supported. **Digital channels** There are 4 digital inputs (DIGIN 16...19) and 4 digital outputs (DIGOUT 24...27) on the 37-pin D-Sub connector; pin assignment see fig. 158. The channel numbers 0...15, 20...23, and 28...31 are not available. Please note: While using digital channels, no instructions for input fifo or output fifo are allowed. Otherwise the SENT interface will work incorrectly. Modul revision Differences between revisions are described below. The revision number is located on the front panel. Output Changes to previous revision Revision date E03 11 / 2013 First version Different revision characters mean different module characteristics and are documented separately. A counter number is added for internal purpose. The interface version is not visible from outside but can be queried by software: Software Output Changes to previous version version date 17 11 / 2013 First official version 1/2014 18 Changes in latch buffer. Programming

The module is programmed comfortably with *ADbasic* instruction. The instructions are described in the Pro II software manual and in the online help of *ADbasic*.

Please note: For some commands you have to check with **P2_SENT_Command_Ready**, whether the SENT interface is ready to process the next command. Such commands are marked in the following table with *.

The include file ${\tt ADwinPro_All.inc}$ contains the following instructions:

Function	Instructions
SENT Interface	
Query interface version	P2_SENT_Get_Version
Initialize interface	P2_SENT_Init
Command processing	P2_SENT_Command_Ready
Read SENT parameter	P2_SENT_Get_ChannelState P2_SENT_Get_ClockTick P2_SENT_Get_PulseCount

Function	Instructions
Set SENT parameter	P2_SENT_Set_CRC_Implementation*
	P2_SENT_Set_Detection*
	P2_SENT_Set_ClockTick*
	P2_SENT_Set_PulseCount*
	P2_SENT_Set_Sensor_Type*
Read SENT signals	P2_SENT_Get_Fast_Channel1
(fast channel)	P2_SENT_Get_Fast_Channel2
	P2_SENT_Get_Fast_Channel_CRC_OK
Read SENT serial message	P2_SENT_Get_Serial_Message_Id
(slow channel)	P2_SENT_Get_Serial_Message_Data
	P2_SENT_Get_Serial_Message_CRC_OK
	P2_SENT_Get_Serial_Message_Array
	P2_SENT_Clear_Serial_Message_
	Array
Collect SENT message	P2_SENT_Request_Latch*
via latch buffer	P2_SENT_Check_Latch
	P2_SENT_Get_Latched_Data
Check for timeout	P2_SENT_Get_Msg_Counter
Digital Channels	
Query digital channels	P2_Digin_Long
	P2_Digin_Edge
Use latch register	P2_Dig_Latch
of digital channels	P2_Dig_Read_Latch
	P2_Dig_Write_Latch
	P2_Sync_All
Set and read back digital out-	P2_Digout, P2_Digout_Bits
puts	P2_Digout_Long
	P2_Get_Digout_Long
	P2_Digout_Set, P2_Digout_Reset
Set module LED	P2_Check_LED, P2_Set_LED

5.8.14 Pro II-SENT-4-Out Rev. E

The module Pro II-SENT-4-Out Rev. E provides 4 output channels using the SENT protocol (Single Edge Nibble Transmission). Additionally there are 4 digital inputs and 4 digital outputs with TTL levels.

The description of the SENT module is divided in the following sections:

- Hardware design
- Working with SENT
- Digital channels
- Modul revision
- Programming

SENT Interface		
SENT channels	4 outputs	
Signal voltage	Low level < 0.5V, High level > 4.1V	
Clock tick range	3µs90µs	
Digital Channels		
Digital channels	4 inputs, 4 outputs; TTL logic	
Pull-Down resistor	10kΩ	
V _{IH}	min. 2V	
V _{IL}	max. 0.8V	
IIH	max. 1µA	
IIL	max. 0.01 mA	
Spannungsbereich	-0.5V +5.5V	
Ausgangsstrom	max. \pm 35mA per channel, max. \pm 70mA per block (4 channels) via V _{CC} or GND	
General		
Connector	37-pin D-Sub female connector	

Fig. 160 - Pro II-SENT-4-Out Rev. E: Specification

Hardware design

The module Pro II-SENT-4-Out Rev. E works according to the specification SAE J2716. You find further information on the web site http://stan-dards.sae.org of SAE International[®].

The connections of the SENT interface are on the 37-pin D-SUB connector; the pin assignment is shown below.

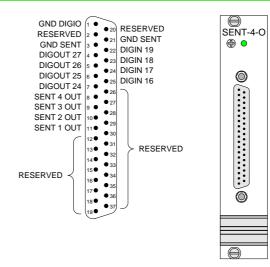


Fig. 161 – Pro II-SENT-4-Out Rev. E: Pin assignment and front panel

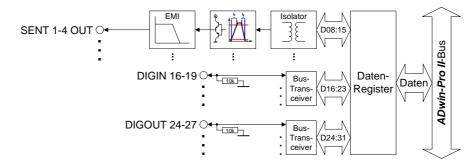


Fig. 162 - Pro II-SENT-4-Out Rev. E: Block diagram

Working with SENT

The SENT protocol works as point-to-point connection which transfers signal values from a sensor to a controller. A SENT message consists of 9 or 10 pulses:

- 1 calibration pulse for synchonization
- 1 nibble pulse (1 nibble = 4 bit): Status and communication, contains amongst others 1...2 Bits of the serial message.
- 3 nibble pulses: first 12 bit value of the sensor
- 3 nibble pulses: second 12 bit value of the sensor
- 1 nibble pulse: CRC checksum of the data pulses
- optionally 1 pause pulse

The length of pulses and SENT messages is measured in clock ticks. The clock tick can have a length of 3µs...90µs.

A serial message consists of an ID, a data value and a CRC checksum. The sending format (standard, enhanced 1, enhanced 2) determines the number of bits for ID and data value. Serial messages are sent distributed to several SENT messages, only 1...2 bits per message.

Several (up to 32) serial messages form a message set. The message set is transferred cyclically.

Operation modes

Terminology

The module distinguishes two operation modes for sending:

Continuous mode: The module continuously sends the currently defined _ SENT messsage.

You can change the SENT message via software: Signals 1/2 (fast channel), serial message and reserved bits. The CRC checksums are calculated automatically. - FIFO mode: You fill a FIFO array with SENT messages, the module reads the FIFO array, and outputs the SENT messages consecutively. As soon as the FIFO runs empty the SENT channel is disabled. You prepare the bit order of SENT messages on your own. This refers in particular to the bits of the serial messages. For the output of SENT messages the following parameters can be set for each Output parameters channel: Clock tick - Fixed total length of the SENT message via pause pulse or variable total length without pause puls - Calculation algorithm "Legacy" or "Recommended" of the CRC checksum. The algorithmrefers to both the signals 1 and 2 as well as to the serial message. - Length of low level at the start of a pulse. Sending format of serial messages: short serial message format: 4 Bit ID + 8 Bit data value. • ٠ enhanced serial message format: 8 Bit ID + 12 Bit data value or 4 Bit ID + 16 Bit data value. You can query how much SENT messages have been sent on an output channel. **Digital channels** There are 4 digital inputs (DIGIN 16...19) and 4 digital outputs (DIGOUT 24...27) on the 37-pin D-Sub connector; pin assignment see fig. 161. The channel numbers 0...15, 20...23, and 28...31 are not available. Please note: While using digital channels, no instructions for input fifo or output fifo are allowed. Otherwise the SENT interface will work incorrectly. Modul revision Differences between revisions are described below. The revision number is located on the front panel. Output Changes to previous revision Revision date 11 / 2013 E03 First version Different revision characters mean different module characteristics and are documented separately. A counter number is added for internal purpose. The interface version is not visible from outside but can be queried by software: Software Output Changes to previous version version date 1 11 / 2013 First official version 2 Better handling in FIFO mode. 1/2014 3 2/2014 Enhanced restart of SENT channels.

Programming

The module is programmed comfortably with *ADbasic* instruction. The instructions are described in the Pro II software manual and in the online help of *ADbasic*.

Please note: For some commands you have to check with **P2_SENT_Command_Ready**, whether the SENT interface is ready to process the next command. Such commands are marked in the following table with *.

The include file ADwinPro_All.inc contains the following instructions:

Function	Instructions
SENT Interface	
Query interface version	P2_SENT_Get_Version
Initialize interface	P2_SENT_Init
Command processing	P2_SENT_Command_Ready
Initialize output channels	P2_SENT_Set_Output_Mode P2_SENT_Get_Output_Mode P2_SENT_Config_Output* P2_SENT_Config_Serial_Messages* P2_SENT_Invert_Channel
Enable / disable channels	P2_SENT_Enable_Channel
Continuous mode: Set SENT messages	P2_SENT_Set_Fast_Channel1 P2_SENT_Set_Fast_Channel2 P2_SENT_Set_Reserved_Bits P2_SENT_Clear_Serial_Message_Arra y* P2_SENT_Set_Serial_Message_Patter n*
	P2_SENT_Set_Serial_Message_Data*
Fifo mode: Set SENT messages	P2_SENT_Fifo_Empty P2_SENT_Fifo_Clear* P2_SENT_Set_Fifo*
Query number of messages	P2_SENT_Get_Msg_Counter
Digital Channels	
Query digital channels	P2_Digin_Long P2_Digin_Edge
Use latch register of digital channels	P2_Dig_Latch P2_Dig_Read_Latch P2_Dig_Write_Latch P2_Sync_All
Set and read back digital outputs	P2_Digout, P2_Digout_Bits P2_Digout_Long P2_Get_Digout_Long P2_Digout_Set, P2_Digout_Reset
Set module LED	P2_Check_LED, P2_Set_LED

5.8.15 Pro II-SPI-2 Rev. E

The module Pro II-SPI-2 Rev. E provides two independent SPI interfaces with master or slave functionality as well as several digital channels.

The module is available in 2 variants:

- ADwin-Pro II-SPI-2: SPI signals use TTL levels.
- ADwin-Pro II-SPI-2-D: SPI signals are differential.

Alternatively, the module can also be used as digital module with only digital inputs and outputs (similar to Pro II-DIO32-TiCo Rev. E).

Each module is equipped with a freely programmable *TiCo* processor, which has full access to the CAN interfaces. Find more information about use and programming of the *TiCo* processor in the *TiCo*-*Basic* manual.

The manual is divided into the following sections:

- TiCo processor
- SPI operation
- Operation mode digital module
- Hardware
- Specification
- Module revisions
- Programming

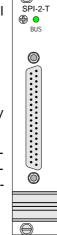
TiCo processor

The module provides the freely programmable *TiCo* processor with 28KiB program memory, and 28KiB data memory. The *TiCo* processor is programmed with *TiCoBasic*.

The *TiCo* processor has–as well as the *ADwin* CPU–access to the SPI controller. Find more information about use and programming of the *TiCo* processor in the *TiCoBasic* manual.

If you store a *TiCoBasic* program in the *TiCo* bootloader, the program is automatically loaded into the *TiCo* processor and started on power-up. Thus, the module can run on its own and independently from the CPU module of the *ADwin-Pro II* system.

SPI operation


The two SPI interfaces can be operated in the following operation modes:

- Both interfaces as SPI master
- Both interfaces as SPI slave
- Interface 1 as SPI master, interface 2 as SPI slave
- For the use as digital module see Operation mode digital module, page 183.

The operation mode is set with the software instruction **P2_SPI_Mode**.

The interfaces are each connected to the SPI bus via the lines SCLK, SS, DATAIN and DATAOUT. The pin assignments for the various operation modes are shown on page 184.

In any operation mode, the module provides 8 digital channels ith TTL levels. Some pins not being used for SPI signals are available as additional digital inputs or outputs.

e

SPI signals

The SPI signals of the module ADwin-Pro II-SPI-2 use 5 V TTL levels, the signals of the module ADwin-Pro II-SPI-2-D are differential.

The SPI interfaces run with a bus frequwency of max. 12.5 MHz.

In theory, an unlimited number of members can be connected to the SPI bus while there has to be exactly one SPI master. The master creates the clock signal on the SPI CLK line and selects via a Slave Select (SS) line the slave he will communicate with. If the master pulls SS to the appropriate TTL level, the slave is activated, listens to SPI MOSI and sends its data to SPI MISO with the clock rate of SPI CLK, normally within the same data transfer.

Thus, an SPI message is transferred from master to slave (MOSI: master out, slave in) and another SPI message from slave to master (MISO: master in, slave out). The data transfer can happen in both directions at the same time.

The length of SPI messages can be configured freely, the maximum length of an SPI message is 64 bits (= 8 Byte).

With each clock signal a bit of the SPI message is transferred. A common data byte requires 8 clock periods to be completely transferred. You can configure if a data transfer starts with the most (MSB) or the least significant bit (LSB). The data transfer is completed when the master permanently deactivates the slave select line.

You can insert a waiting time into the clock signal SCLK of the SPI master. As well you can insert a time delay for reading the MISO signal.

Generally, the slave select signal SS out of the master ends a defined time before the start of the clock signal SCLK and ends by the same time after the end of the clock signal. You can extend this time interval by software.

Interface SPI master

The module Pro II-SPI-2 Rev. E provides the following lines / signals for the communication as SPI master. The numbers 1 and 2 refer to the numbers of the interfaces:

Signal	Description
SCLK1 out SCLK2 out	Outgoing clock signal (SPI clock) being created by the appropriate master. The maximum SPI clock rate is 12.5 MHz.
	The real maximum clock rate depends on the used cable length.
SS1 out SS2 out	Outgoing slave select signal to activate connected SPI slaves for the currently valid SPI message.
	The single slave select line SS out is used in automatic activa- tion mode; with manual activation further slave select lines can be used.
DATAOUT1 DATAOUT2	Data line from master to slave: Master Out, Slave In (MOSI).
DATAIN1 DATAIN2	Data line from slave to master: Master In, Slave Out (MISO).

Interface SPI slave

The module Pro II-SPI-2 Rev. E provides the following lines / signals for the communication as SPI slave. The numbers 1 and 2 refer to the numbers of the interfaces:

Signal	Description
SCLK1 in SCLK2 in	Incoming clock signal (SPI Clock) being being created by the appropriate master. The maximum SPI clock rate is 12.5 MHz.
	The real maximum clock rate depends on the used cable length.
SS1 in SS2 in	Incoming slave select signal to activate the SPI slave for the currently valid SPI message.
DATAIN1 DATAIN2	Data line from master to slave: Master Out, Slave In (MOSI).
DATAOUT1 DATAOUT2	Data line from slave to master: Master In, Slave Out (MISO).

At the input and at the output of the SPI slave any data runs through a FIFO ring buffer. Both input and output Fifo can hold up to 18 values of 32 bits.

When the slave receives a message from the SPI master through SPI MOSI, the slave starts sending the next message from the output Fifo through SPI MOSI to the master. Sending is done within the same data transfer.

As soon as an incoming message is received completely, the SPI slave stores the message in the input Fifo. You can read messages from the input Fifo via software. The Fifo can buffer up to 18 messages of 32 bit length; if the SPI message length is defined greater than 32 bits, only 9 messsages (using each 2 Fifo values) can be buffered.

The output Fifo of the SPI slave can also buffer 18 messages of 32 bit length or 9 messages of more than 32 bit length. Please make sure to write new messages into the output Fifo in time so the Fifo does not run empty. If and as long as the output Fifo contains no more messages, the SPI slave sends the recently sended message again.

Operation mode digital module

With all operation modes the module provides 8 digital channels with TTL levels (see specification). The signal type of other digital channels differs between module variants Pro II-SPI-2 (TTL levels) and Pro II-SPI-2-D (differential signals), see below.

In operation mode digital module (see **P2_SPI_Mode**) the module runs without SPI interfaces, i.e. all channels run as digital inputs or outputs.

The module provides an EVENT input. Via the trigger input EVENT an external signal can trigger a process cycle of the ADwin CPU which is processed immediately and completely (see ADbasic manual).

Pro II-SPI-2 (TTL level)

With SPI operation modes, some pins not being used for SPI signals are available as additional digital inputs or outputs. These pins are already fixed to be running as inputs or outputs.

In operation mode digital module 32 digital inputs and outputs with TTL levels are available (similar to digital module Pro II-DIO 32-TiCo). The channels can be configured in groups of 8 as inputs or outputs using the instruction **P2_DigProg**. Please note the appropriate software documentation and the online help.

Pro II-SPI-2-D (differential signals)

In operation mode digital module 8 digital channels with TTL levels and 12 differential channels are available. With SPI operation modes, the 8 digital TTL channels and 4 differential channels are available.

The channels with TTL levels can be configured in groups of 4 as inputs or outputs using the instruction **P2_DigProg**. The differential digital channels can be individually configured as inputs or outputs with **P2_DigProg_Bits**.

Please note, that instructions for digital channels of the module Pro II-SPI-2-D are valid for both channels with TTL signals and channels with differential signals. As an example P2_Digout_Long will set differential signals with bits 0...11 and TTL signals with bits 16...19 / 24...27 (as far as they were configured as outputs). The bits 12...15, 20...23, and 28...31 are not used here.

Hardware

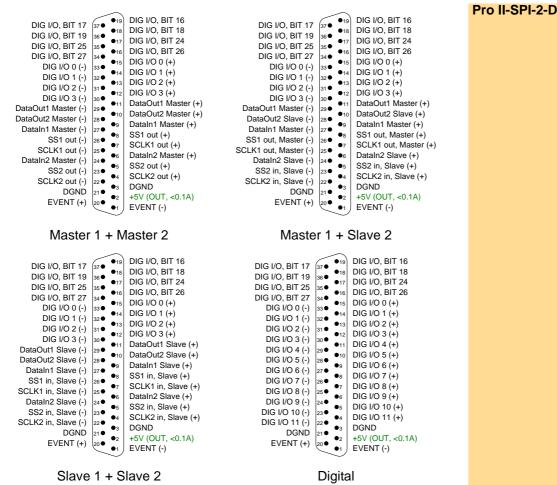
The pin assignment depends on the current operation mode of the module (**P2_SPI_Mode**).

If you have problems with shielding of unused DataIn/DataOut lines, it may help to connect the pins to logical 0 or DGND.

Pro	II-SPI-2
-----	----------

DIG I/O, BIT 1 DIG I/O, BIT 3 DIG I/O, BIT 5 DIG I/O, BIT 7 DIGIN, BIT 9 DataIn2 Master DIGIN, BIT 13	37 • 19 36 • 18 35 • 17 34 • 16 33 • 15 33 • 14 32 • 13	DIG I/O, BIT 2 DIG I/O, BIT 4 DIG I/O, BIT 6 DataIn1 Master DIGIN, BIT 10 DIGIN, BIT 12	DIG I/O, BI DIG I/O, BI DIG I/O, BI DIG I/O, BI DIGIN, BI Dataln2 S SCLK2 in, S
DIGIN, BIT 15 SS1 out DIGOUT, BIT 19 DIGOUT, BIT 21 DIGOUT, BIT 23 SS2 out DIGOUT, BIT 27 DIGOUT, BIT 27	12 30 ● 112 29 ● 111 28 ● 99 27 ● 99 27 ● 88 26 ● 67 25 ● 66 24 ● 55	DIGIN, BIT 14 DataOut 1 Master SCLK1 out DIGOUT, BIT 20 DIGOUT, BIT 22 DataOut 2 Master SCLK2 out DIGOUT, BIT 28	DIGIN, BI SS3 DIGOUT, BI DIGOUT, BI DIGOUT, BI RESER RESER
DIGOUT, BIT 29 DIGOUT, BIT 31 DGND EVENT IN	23 • 4 22 • 3 21 • •2 20 • •1	DIGOUT, BIT 30 DGND +5V (OUT, <0.1A) DGND	RESER RESER DO EVEN
Maste	r 1 + N	laster 2	Ma
DIG I/O, BIT 1 DIG I/O, BIT 3 DIG I/O, BIT 5 DIG I/O, BIT 5 DIG I/O, BIT 7 SS1 in, Slave DIGIN, BIT 15 RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED DGND EVENT IN	$\begin{array}{c} 37 \bullet 19 \\ 37 \bullet 19 \\ 36 \bullet 17 \\ 36 \bullet 16 \\ 33 \bullet 16 \\ 33 \bullet 14 \\ 32 \bullet 13 \\ 30 \bullet 11 \\ 29 \bullet 10 \\ 28 \bullet 9 \\ 27 \bullet 8 \\ 27 \bullet 8 \\ 27 \bullet 8 \\ 26 \bullet 6 \\ 22 \bullet 6 \\ 23 \bullet 4 \\ 22 \bullet 4 \\ 32 \bullet 4 \\ 21 \bullet 2 \\ 20 \bullet 1 \\ \end{array}$	DIG I/O, BIT 0 DIG I/O, BIT 2 DIG I/O, BIT 4 DIG I/O, BIT 6 DataInt Slave SS2 in, Slave SS2 in, Slave SS2 in, Slave DIGIN, BIT 14 DataOut 1 Slave RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED RESERVED DGND +5V (OUT, <0.1A) DGND	DIG I/O, B DIG I/O, B

Slave 1 + Slave 2



DIG I/O, BIT 0 •19 BIT 1 37 ● DIG I/O. BIT 2 •18 BIT 3 36 ● **●**17 DIG I/O, BIT BIT 5 35 • •16 DIG I/O, BIT 6 BIT 7 34 🗢 ●15 DIG I/O, BIT 8 BIT 9 33 ● ●14 DIG I/O, BIT 10 BIT 11 32 • DIG I/O, BIT 12 •13 BIT 13 BIT 15 31 🗣 •12 DIG I/O, BIT 14 30 🖷 ●11 DIG I/O, BIT 16 BIT 17 29 ● 10 DIG I/O. BIT 18 BIT 19 28 • •9 DIG I/O, BIT 20 BIT 21 27 • •8 DIG I/O, BIT 22 BIT 23 26 🗣 DIG I/O, BIT 24 •7 BIT 25 25 🗣 •6 DIG I/O, BIT 26 BIT 27 24 🗣 •5 DIG I/O, BIT 28 BIT 29 23 🗣 DIG I/O, BIT 30 •4 BIT 31 22 • •3 DGND DGND 21 🗣 +5V (OUT, <0.1 •2 20 ● ENT IN •1 DGND

Digital

Specification

Inputs/outputs	Pro II-SPI-2: SPI channels with TTL logic (5V) 832 dig. I/O, event input Pro II-SPI-2-D: SPI channels with diff. signals 8 dig. I/O TTL 412 diff. dig. I/O, diff. event input
Input resistance	TTL inputs: 10 k Ω , pull-down
	Diff. inputs:120 Ω
V _{IH} min.	2 V
V _{IL} max.	0,8 V
I _{IH} max.	1 μΑ
Voltage range	0 V +5 V
Output current	max. ±35 mA per channel, max. ±70 mA per SPI interface
Input / output FIFO	Size: 511 value pairs Frequency: 100MHz
TiCo	Prozessor type: TiCo1 Clock rate: 50MHz Memory size: 28kiB PM internal, 28kiB DM internal
Connector	37-pin D-Sub female connector

Module revisions

The differences between the revisions are described below: The revision number to be found on the front cover.

	Revision Output Prev date	vious changes	
	E01 01 / 2013 Erst	-Version	
		nean different module properties and are docu- onal numbering of the revision is used for internal	
	Programming		
Programming in ADbasic	The module is comfortably programmed with <i>ADbasic</i> instructions. Instruc- tions are described in <i>ADbasic</i> online help and in the Pro II Software manual.		
	The include file ADwinPro_All.inc contains instructions for the following functions:		
	Function	Instructions	
	Configure SPI interface	P2_SPI_Mode	
		P2_SPI_Config	
		P2_SPI_Master_Config	
		P2_SPI_Slave_Config	
	SPI master: special configu- ration	P2_SPI_Master_Set_Clk_Wait	
	SPI master:	P2_SPI_Master_Set_Value32	
	provide output data	P2_SPI_Master_Set_Value64	
	SPI master:	P2_Digout, P2_Digout_Bits	
	Set slave select line	P2_Digout_Long	
	Start data transfer	P2_SPI_Master_Start	
	SPI master: read status	P2_SPI_Master_Status	
	SPI master:	P2_SPI_Master_Get_Value32	
	Read message	P2_SPI_Master_Get_Value64 P2_SPI_Master_Get_Static_Input	
	SPI slave:	P2_SPI_Slave_OutFifo_Write	
	Use input/output Fifo	P2_SPI_Slave_OutFifo_Empty	
		P2_SPI_Slave_InFifo_Full	
		P2_SPI_Slave_InFifo_Read	
		P2_SPI_Slave_Clear_Fifo	
	Configure digital TTL chan- nels	P2_DigProg	
	Configure digital differentia channels	P2_DigProg_Bits (nur Pro II-SPI-2-D)	
	Query input signals	P2_Digin_Long	
	Use latch register	P2_Dig_Latch, P2_Dig_Read_Latch	
		P2_Dig_Write_Latch, P2_Sync_All	
	Control edges at input chan-	P2_Dig_Fifo_Mode	
	nels	P2_Digin_Fifo_Enable	
		P2_Digin_Fifo_Read	
		P2_Digin_Fifo_Read_Fast	
		P2_Digin_Fifo_Read_Timer	
		P2_Digin_Fifo_Clear	
		P2_Digin_Fifo_Full	
	Query input edge status	P2_Digin_Edge	

Function	Instructions
Set and read back output sig-	P2_Digout, P2_Digout_Bits
nals	P2_Digout_Long
	P2_Digout_Reset
	P2_Digout_Set
	P2_Get_Digout_Long
Set output signals automati-	P2_Digout_Fifo_Clear
cally	P2_Digout_Fifo_Empty
	P2_Digout_Fifo_Enable
	P2_Digout_Fifo_Read_Timer
	P2_Digout_Fifo_Start
	P2_Digout_Fifo_Write
Set module LED	P2_Check_LED, P2_Set_LED
Set event input	P2_Event_Enable, P2_Event_Config
	P2_Event_Read

The module can be programmed with *TiCoBasic* instructions. The instructions are described in *TiCoBasic* online help.

Programming in TiCoBasic

The include file ${\tt SPI_TiCo.inc}$ contains instructions for the functions:

Function	Instructions
Configure SPI interface	SPI_Mode
	SPI_Config
	SPI_Master_Config
	SPI_Slave_Config
SPI master: special configu- ration	SPI_Master_Set_Clk_Wait
SPI master:	SPI_Master_Set_Value32
provide output data	SPI_Master_Set_Value64
SPI master:	Digout, Digout_Bits
Set slave select line	Digout_Long
Start data transfer	SPI_Master_Start
SPI master: read status	SPI_Master_Status
SPI master:	SPI_Master_Get_Value32
Read message	SPI_Master_Get_Value64
	SPI_Master_Get_Static_Input
SPI slave:	SPI_Slave_OutFifo_Write
Use input/output Fifo	SPI_Slave_OutFifo_Empty
	SPI_Slave_InFifo_Full
	SPI_Slave_InFifo_Read
	SPI_Slave_Clear_Fifo
Configure digital TTL chan- nels	DigProg
Configure digital differential channels	DigProg_Bits (nur Pro II-SPI-2-D)
Query input signals	Digin_Long
Use latch register	Dig_Latch, Dig_Read_Latch
	Dig_Write_Latch

Function	Instructions
Control edges at input chan-	Dig_Fifo_Mode
nels	Digin_Fifo_Enable
	Digin_Fifo_Read
	Digin_Fifo_Read_Timer
	Digin_Fifo_Clear
	Digin_Fifo_Full
Query input edge status	Digin_Edge
Set and read back output signals	Digout, Digout_Bits
	Digout_Long
	Digout_Reset
	Digout_Set
	Get_Digout_Long
Set output signals automati-	Digout_Fifo_Clear
cally	Digout_Fifo_Empty
	Digout_Fifo_Enable
	Digout_Fifo_Read_Timer
	Digout_Fifo_Start
	Digout_Fifo_Write
Set module LED	Check_LED, Set_LED
Set event input	Event_Enable, Event_Config
	Trigger_Event

Programming TiCo access

To access the *TiCo* processor from the ADwin CPU the following *ADbasic* instructions are defined in the include file ADwinPro_All.inc. The instructions are described in *ADbasic* online help and in the *TiCoBasic* manual.

Function	Instructions
Data exchange with the TiCo	P2_TDrv_Init
processor via global variables	P2_GetData_Long, P2_Get_Par,
	P2_Get_Par_Block
	P2_SetData_Long, P2_Set_Par,
	P2_Set_Par_Block
	P2_Get_TiCo_RingBuffer,
	P2_Set_TiCo_RingBuffer
	P2_RingBuffer_Empty
	P2_RingBuffer_Full
Control TiCo processor	P2_TiCo_Reset, P2_TiCo_Start,
	P2_TiCo_Stop
	P2_Get_TiCo_Bootloader_
	Status
	P2_Get_TiCo_Status, P2_Workload
Control TiCo processes	P2_Process_Status
	P2_TiCo_Get_Processdelay
	P2_TiCo_Set_Processdelay
	P2_TiCo_Start_Process
	P2_Tico_Stop_Process
Transfer TiCo programs	P2_TiCo_Flash, P2_TiCo_Load

5.8.16 Pro II-LS-2 Rev. E

The module Pro II-LS-2 Rev. E provides 2 LS-bus interfaces on 9-pin D-SUB connectors (female).

RESERVED RESERVED SIGNAL HIGH RESERVED	2 3 4	• 6 • 7 • 8	RESERVED RESERVED SIGNAL LOW RESERVED
SIGNAL GND	5	•	RESERVED

Fig. 163 - Pro II-LS-2 Rev. E: Pin assignment

The LS bus is a bi-directional serial bus with 5MHz clock rate (Low Speed). The bus is a in-house-design to access external modules. The first module available is HSM-24V which can process 24 Volt signals on 32 digital channels.

ES-BUS

LS- PORT

The bus is set up as line connection, i.e. the *ADwin* interface and up to 15 LS bus modules are connected to each other via two-way links. The last module of the LS bus must have the bus termination activated. The maximum bus length is 5m.

The LS bus modules are programmed with *ADbasic* instructions, which are sent from the LS bus interface of the *ADwin* system. The instructions are mostly specific for the module and are described in the manual of the LS bus module (or in the online help).

The following instructions are available:

Range	Instructions
Initialize a module on the LS-bus.	LS_DIO_Init
Configure digital channels of module HSM- 24V as inputs or outputs.	LS_DigProg
Query state of digital channels on module HSM-24V (only with 1 modul on LS-bus).	LS_Dig_IO, LS_Digin_Long
Output value	LS_Digout_Long
Initialize the watchdog of the LS bus.	LS_Watchdog_Init, LS_Watchdog_Reset

6 Calibration

6.1 General information

The digital-to-analog (DAC) and analog-to-digital (ADC) converters of the *ADwin* systems are calibrated in factory. According to the regulations for measurement accuracy it is recommended to calibrate the systems in regular time intervals.

Programming, start-up and operation, as well as the modification of program parameters must be performed only by appropriately qualified personnel.

Qualified personnel are persons who, due to their education, experience and training as well as their knowledge of applicable technical standards, guidelines, accident prevention regulations and operating conditions, have been authorized by a quality assurance representative at the site to perform the necessary acivities, while recognizing and avoiding any possible dangers.

(Definition of qualified personnel as per VDE 105 and ICE 364).

This product documentation and all documents referred to, have always to be available and to be strictly observed. For damages caused by disregarding the information in this documentation or in all other additional documentations, no liability is assumed by the company *Jäger Computergesteuerte Messtechnik GmbH*, Lorsch, Germany.

The following tools are necessary to calibrate the system:

- a reference voltage source with an accuracy of:
 - 10µV for calibration of 18 bit converters
 - 30µV for calibration of 16 bit converters
 - 100µV for calibration of 14 bit converters
- a digital multi meter with an accuracy of:
 - 10µV for calibration of 18 bit converters
 - 30µV for calibration of 16 bit converters
 - 100µV for calibration of 14 bit converters
- connecting cables from the input/outputs to the reference voltage and to the measurement device

Caution: Risk of electric shock.

ADwin-Pro systems have a power supply device, which gives access to high-voltage lines and connectors if the system is open. The ventilation slots are wide enough to pass through an alignment tool of 2.5 mm (=0.1inch).

Calibrate the system only when it is closed! Do not pass any conductive objects through the ventilation slots!

documents

Availability of the

Qualified personnel

Tools

6.2 Calculation basis The standard voltage range of the analog inputs/outputs of the ADwin systems Voltage range is -10V ... +10V (bipolar 20 Volt). The 65536 (2¹⁶) digits are allocated to the corresponding voltage ranges of the Allocating digits to ADC and DAC in such a manner that the value for voltage 0 (zero) digits corresponds to the maximum negative voltage. - 65535 digits correspond to the maximum positive voltage. The value for 65536 digits, exactly 10 Volt, is therefore just beyond the measurement range, therefore you get for the 16 bit AD or DA conversion a maximum voltage value of 9.999695 Volt, and for the 18 bit AD conversion a value of 9.999923706 Volt. In bipolar settings this results in a zero offset, called offset in the following text. Zero offset The offset has the value V_{OFF}=-10V. The value V_{LSB} defines the voltage, which corresponds to the least significant Least Significant bit bit. The value in the standard setting is V_{LSB} - with 18 bit converters: $20V . / . 2^{18} = 76.294 \mu V$ with 16 bit converters: $20V . / . 2^{16} = 305.175 \mu V$ with 14bit converters: 20V /. $2^{14} = 1220.7\mu V$ When using Pro-AIn modules with programmable gain arrays (PGA), you can Gain k_v amplify the input voltage by factors 2, 4 and 8. Thus, the measurement range gets smaller by the corresponding gain factor k_{V} . Please pay attention to the fact that also the interference signals are amplified when using applications with $k_V > 1$. These can be reduced by programming digital filters in ADbasic. In order to get the same allocation of bits during measurements with 14 bit ADC Allocating the bits as with a 16 bit ADC, the converted value is presented left-aligned in the lower word (16 bit) with the 14 bit ADC. The least 2 significant bits are always 0. 31...2 Bit no. 23...1 15...6 5...2 1...0 4 6 18 bit value in bits 6...23 0 0 0 con-0 0 16 bit value in bits 0...15 tent 0 14 bit value in bits 2...15 0 0 lower word upper word Fig. 164 – Bit allocation with different resolutions The 16384 digits of a 14 bit ADC are mapped to the 65535 digits of a 16 bit ADC. Therefore, 4 digits of the 16 bit ADC correspond to one digit of the 14 bit ADC. For DAC use the formula: DAC $U_{OUT} = Digits \cdot U_{LSB} + U_{OFF}$ Digits = $\frac{U_{OUT} - U_{OFF}}{U_{ISB}}$

For ADC use the formula:

Digits =
$$\frac{U_{IN} - U_{OFF}}{U_{LSB}}$$

 $U_{IN} = \frac{Digits \cdot U_{LSB} + U_{OFF}}{k_V}$

Tolerance range

Slight variations regarding the calculated values may be within the tolerance range of the individual component. Two kinds of variations are possible (in LSB), which are indicated in your hardware manual.

- The integral non-linearity (INL) defines the deviation from the ideal wave form covering the whole input voltage range.
- The differential non-linearity (DNL) defines the deviation from the ideal value of the quantization level.

6.3 Calibrating a module

Initializing the hardware

At first define the voltage rangeof the module.

Calibration has to be made when the system reaches its operating temperature. 30 minutes after power-up of the system, the operating temperature is reached, provided the system has a (room) temperature of approx. 20...25 °C before power-up.

Please note the general information in chapter 6.1.

Call the program ADpro.exe from the Windows start menu under "Programs\ADwin". The program requires Microsoft .NET Framework 2.0. The dialog window Scan opens.

Scan	X
CPU module	
Processor	T10 🔽
Device No.	🚅 6h 🔽
BTL file path	
🔽 Use default	
C:VAD win	
Options	
🔲 Use as defa	ult on application start
	Cancel Scan

Please note: The next step will stop all processes and reset all module settings!

Enter the data for the *ADwin* system to be calibrated. The button Scan starts a connection to the *ADwin* system and reads system information. The program ADpro.exe will initialize the *ADwin* system, i.e. it stops and deletes running processes.

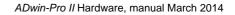
If your **ADwin** system has booted successfully, the window "ADwin - ADpro" opens.

ADC

DNL

lot	Мо	dule	Rev.	Description			Туре	Address	Hint					
1	CO		A	Incremental and	in/down.cou	inter P	DIO	6						
2	TC		Ä	THERMOCOUPL			EXT	3						
3	AIN F	8/18	E	18-BIT ADC			ADC	2	10 C					
4	AIN 3	2/16	С	16-BIT ADC			ADC	7						
5				-			Section Section	-						
6	DIC	32	E	DIGITAL I/O			PR02	10						
7	DIO		E	DIGITAL I/O			PR02	11						
3	CPU		-	PROCESSOR		~	CPU	350						
9	RS 4		A	SERIAL PORT			EXT	5						
0	AOUT		В	16-BIT DAC			DAC	1						
1	23		- 52					3.5%						
2	2							1.00						
3	2.		-3	-			. \	0.20						
4	8		22	19. 										
5 6	22		52					1	Fan a		. ماريام			
0			156	1.					For ea					-
Г	CO	TC	AIN	AIN	DIO	DIO	CPU		matio			and	noaui	e
	4D	8-J	F8/18		32	32	T11 4	RS AO 85-2 4/	symbo	ol belo	w.			
			0			Ö								(I
	-	-		-	-	-		7	i via rig	jht mo	use c	ICK M	ore in	tor-
							X		matio	n is av	ailabl	e.		
	REV.A	REV. A	REV.	E REV.C	REV.C	REV.C	F	EV.A REV	/.B					
	6	3	2	7	10	11		5 1						

In the window ADpro, click on the module to calibrate and select the menu entry Calibration in the Module menu. If the Calibration entry is not displayed in the menu, the selected module cannot be calibrated.


Connect the measurement device and the reference voltage source.

Follow the information displayed in the dialog window. Please note the difference of analog input modules with and without multiplexer:

- with the AIN modules the calibration of the ADC is effected via the input channel 1.
- with the AIN-F modules the connected channel is selected in the window "Input channel".

Calibration

7 Accessories

7.1 LEMO Cable Sets for ADwin-Pro Systems

1-pole

Pro-CS-1	4 cables with 200mm (7.8 inch) and 4 cables with 400mm (15.7 inch)
Pro-CS-2	4 cables with 400mm (15.7 inch) and 4 cables with 800mm (31.5 inch)
Pro-CS-3	4 cables with 1000mm (39.4 inch) and 4 cables with 1500mm (59 inch)
Pro-CS-4	4 cables with 5000mm (196.8 inch)
Pro-CS-5	8 cables 400 mm (15.7 inch)
Pro-CS-6	8 cables 1000 mm (39.4 inch)

Pro-CS-7 8 cables 2000 mm (78.7 inch)

All cables with a male LEMO connector on each end.

2-pole

Pro-CS-8	4 cables with 2000mm (78.7 inch): LEMO connector 2-pole - cable - non-assembled end
Pro-CS-9	4 cables 1000 mm (39.4 inch) and 4 LEMO connectors (female, loose) for front panel assembly
Pro-CS-10	4 cables 500 mm (19.7 inch) and 4 LEMO connectors (female, loose) for front panel assembly
Pro-CS-11	4 cables 2000 mm (78.7 inch) and 4 LEMO connectors (female, loose) for front panel assembly

If not stated otherwise, all cables have a male 2-pole LEMO connector on each end.

7.2 LEMO Adapter sets

Pro-AS-1	4 adapters: LEMO female connectors to BNC connectors (male)
Pro-AS-3	4 LEMO Y connectors (male to double female)
Pro-AS-4	4 adapters: LEMO female connector to LEMO female connector
Pro-AS-5	4 terminators: 50 Ω , LEMO female connector
Pro-AS-6	4 cable adapters, length 4" / 150 mm: LEMO female connector to BNC male connector
Pro-AS-7	4 cable adapters, length 4" / 1000 mm: LEMO female connector to BNC male connector
Pro-AS-8	4 cable adapters, length 4" / 2000 mm: LEMO female connector to BNC male connector
Pro-AS-9	4 cable adapters, length 4" / 1000 mm: LEMO female connector to BNC female connector
Pro-AS-10	4 cable adapters, length 4" / 2000 mm: LEMO female connector to BNC female connector

7.3 Cables / Terminal blocks for OPT-16 and TRA-16

ADwin-Cable-1	Extension cable 1000 mm, shielded, for 37-pin DSub con- nectors; one side female, other side male
ADwin-Cable-2	Extension cable 500 mm, shielded, for 37-pin DSub con- nectors; one side female, other side male
ADwin-Cable-3	Extension cable 250 mm, shielded, for 37-pin DSub con- nectors; one side female, other side male
ADwin-AT-37M	Terminal block for37-pin DSub connector

7.4 Reference addresses

7.4.1 LEMO Connectors

Pro modules are equipped with the following LEMO connectors:

- Male connectors / female connectors of series 00 NIM-CAMAC, 1-pole
 - Cable connector: Type FFS
 - Built-in female connector: Type ERN
- Male connectors / female connectors of series 00 Multi-Contact, 2-pole
 - Cable connector: Type FGG
 - Built-in female connector: Type EGG
- Pt100/RTD-8 modules: Male connectors / female connectors of series 0B:
 - Cable connector: Type FGG
 - Built-in female connector: Type EGG

Manufacturer of LEMO connectors:

LEMO S.A.	Tel.: +41 21 695 16 00
Chemin de Champs-Courbes 28	Fax: +41 21 695 16 01
P.O. Box 194	E-Mail: info@lemo,com
CH-1024 Ecublens, Switzerland	Internet: www.lemo.com

7.4.2 Power Supply Pro-Mini

The plug connector for external power supply of the casing Pro-Mini is manufactured by Phoenix Contact GmbH:

Combicon plug component, pitch 5.0mm, Type MSTB 2,5/ 3-STF; order no. 1786844 (as of Dec. 2005)

Manufacturer of the connector:

Phoenix Contact GmbH & Co. KG	Tel.: +49 5235 300
Flachsmarktstraße 8	Fax: +49 5235 341 200
D-32825 Blomberg	E-Mail: info@phoenixcontact.com
	Internet: www.phoenixcontact.com

ADwin-Pro II Hardware, manual March 2014

Annex

A.1 RoHS Declaration of Conformity

The directive 2002/95/EG of the European Union on the restriction of the use of certain hazardous substances in electrical und electronic equipment (RoHS directive) has become operative as from 1st July, 2006.

The following substances are involved:

- Lead (Pb)
- Cadmium (Cd)
- Hexavalent chromium (Cr VI)
- Polybrominated biphenyls (PBB)
- Polybrominated diphenyl ethers (PBDE)
- Mercury (Hg)

The product line *ADwin-Pro II* complies with the requirements of the RoHS directive in all delivered variants.

A.2 List of Modules

The list of modules is sorted by page numbers.

Pro-CPU-T11;
Pro II-Boot;
Pro II-MIO-4 Rev. E;
Pro II-MIO-4-ET1 Rev. E;
Pro II-MIO-D12 Rev. E;
Pro II-Aln-8/18 Rev. E;
Pro II-Aln-32/18-D Rev. E;
Pro II-Aln-16/18-C Rev. E;
Pro II-Aln-8/18-8B Rev. E;
Pro II-Aln-16/18-8B Rev. E;
Pro II-Aln-F-4/14 Rev. E;
Pro II-Aln-F-8/14 Rev. E;
Pro II-Aln-F-4/16 Rev. E;
Pro II-Aln-F-8/16 Rev. E;
Pro II-Aln-F-4/18 Rev. E;
Pro II-Aln-F-8/18 Rev. E;
Pro II-AOut-4/16 Rev. E;
Pro II-AOut-8/16 Rev. E;
Pro II-AOut-1/16 Rev. E;
Pro II-DIO-32 Rev. E;
Pro II-DIO-32-TiCo Rev. E;
Pro II-DIO-32-TiCo2 Rev. E;
Pro II-OPT-16 Rev. E;
Pro II-OPT-32-24V Rev. E;
Pro II-REL-16 Rev. E;
Pro II-TRA-16 Rev. E;
Pro II-TRA-16-G Rev. E;
Pro II-PWM-16 Rev. E;
Pro II-PWM-16-I Rev. E;
Pro II-Comp-16 Rev. E;

Pro II-CNT-T Rev. E;
Pro II-CNT-D Rev. E;
Pro II-CNT-I Rev. E;
Pro II-RTD-8 Rev. E;
Pro II-TC-8 ISO Rev. E;
Pro II-CAN-2 Rev. E;
Pro II-RSxxx Rev. E;
Pro II-RS422-4 Rev. E;
Pro II-LIN-2 Rev. E;
Pro II-Profi-SL Rev. E;
Pro II-MIL-1553 Rev. E;
Pro II-ARINC-429 Rev. E;
Pro II-FlexRay-2 Rev. E;
Pro II-EtherCAT-SL Rev. E;
Pro II-SENT-4 Rev. E;
Pro II-SENT-6 Rev. E;
Pro II-SENT-4-Out Rev. E;
Pro II-SPI-2 Rev. E;
Pro II-LS-2 Rev. E;