
ADwin-Gold-
USB / -ENET

Manual

ADwin-Gold USB / ENET, manual version 4.3, January 2012

ADwin-Gold USB / ENET, manual version 4.3, January 2012

For any questions, please don’t hesitate to contact us:

Hotline: +49 6251 96320
Fax: +49 6251 5 68 19
E-Mail: info@ADwin.de
Internet www.ADwin.de

Jäger Com-
putergesteuerte
Messtechnik GmbH
Rheinstraße 2-4
D-64653 Lorsch
Germany

ADwin-Gold USB / ENET, manual version 4.3, January 2012 III

ADwin
Table of contents

 Typographical Conventions .V

1 Information about this Manual . 1

2 System description . 2
2.1 ADwin system concept. 2
2.2 The ADwin-Gold System . 4

3 Operating Environment . 6

4 Initialization of the Hardware . 7

5 Inputs and Outputs . 9
5.1 Analog Inputs and Outputs. 10
5.2 Digital Inputs and Outputs . 13
5.3 Time-Critical Tasks . 14

6 Calibration . 17
6.1 General Information . 17
6.2 Calibrating . 17

7 DA Add-On . 21

8 CO1 Counter Add-On . 22
8.1 Hardware . 22
8.2 Software . 24
8.3 Operating Mode Impulse/Event Counting . 25
8.4 Operating Mode Impulse Width and Period Width Measurement 27

9 CAN add-on . 30
9.1 SSI Decoder. 31
9.2 CAN Interface. 33
9.3 RSxxx Interfaces . 35

10 ADwin-Gold-Boot . 41

11 Accessories . 42

12 Software . 43
12.1 Analog Inputs and Outputs. 44
12.2 Digital Inputs and Outputs . 56
12.3 Counter . 65
12.4 CAN interface. 83
12.5 RSxxx interface . 98
12.6 SSI interface. 108

 Annex . A-1
A.1 Technical Data. A-1
A.2 Hardware Addresses - General Overview . A-5
A.3 Hardware revisions . A-7

ADwin

IV ADwin-Gold USB / ENET, manual version 4.3, January 2012

A.4 RoHS Declaration of Conformity . A-7
A.5 Baudrates for the CAN bus . A-8
A.6 Table of figures . A-11
A.7 Index . A-12

ADwin-Gold USB / ENET, manual version 4.3, January 2012 V

Typographical ConventionsADwin
Typographical Conventions
"Warning" stands for information, which indicate damages of hardware or soft-
ware, test setup or injury to persons caused by incorrect handling.

You find a "note" next to

– information, which absolutely have to be considered in order to guaran-
tee an error free operation.

– advice for efficient operation.

"Information" refers to further information in this documentation or to other
sources such as manuals, data sheets, literature, etc.

<C:\ADwin\ …>File names and paths are placed in <angle brackets> and characterized in the
font Courier New.

Program textProgram commands and user inputs are characterized by the font Courier
New.

Var_1ADbasic source code elements such as commands, variables, comments and
other text are characterized by the font Courier New and are printed in color
(see also the editor of the ADbasic development environment).

Bits in data (here: 16 bit) are referred to as follows:

Bit No. 15 14 13 … 01 00
Bit value 215 214 213 … 21=2 20=1
Synonym MSB - - - - LSB

Typographical Conventions ADwin

VI ADwin-Gold USB / ENET, manual version 4.3, January 2012

ADwin-Gold USB / ENET, manual version 4.3, January 2012 1

Information about this ManualADwin
1 Information about this Manual
This manual contains complex information about the operation of the ADwin-Gold sys-
tem. Additional information are available in

– the manual "ADwin Installation", which describes all interface installations for the
ADwin systems.
With this manual you begin your installation!

– the description of the configuration program ADconfig, with which you initialize
the communication from the corresponding interface to your ADwin-Gold system.

– the manual ADbasic, which explains basic instructions for the compiler ADbasic
and the functional layout of the ADwin system.

– the manuals for all current development environments containing the description
of installation and instructions.

Please note:
For ADwin systems to function correctly, adhere strictly to the information provided in
this documentation and in other mentioned manuals.

Qualified personnelProgramming, start-up and operation, as well as the modification of program parameters
must be performed only by appropriately qualified personnel.

Qualified personnel are persons who, due to their education, experience and trai-
ning as well as their knowledge of applicable technical standards, guidelines, ac-
cident prevention regulations and operating conditions, have been authorized by
a quality assurance representative at the site to perform the necessary acivities,
while recognizing and avoiding any possible dangers.
(Definition of qualified personnel as per VDE 105 and ICE 364).

Availability of the
documents

This product documentation and all documents referred to, have always to be available
and to be strictly observed. For damages caused by disregarding the information in this
documentation or in all other additional documentations, no liability is assumed by the
company Jäger Computergesteuerte Messtechnik GmbH, Lorsch, Germany.

Legal informationThis documentation, including all pictures is protected by copyright. Reproduction,
translation as well as electronical and photographical archiving and modification require
a written permission by the company Jäger Computergesteuerte Messtechnik GmbH,
Lorsch, Germany.
OEM products are mentioned without referring to possible patent rights, the existence
of which, may not be excluded.

Subject to change.
Hotline address: see inner side of cover page.

System description ADwin

2 ADwin-Gold USB / ENET, manual version 4.3, January 2012

2 System description

2.1 ADwin system concept
ADwin systems guarantee fast and accurate operation of measurement data acquisi-
tion and automation tasks under real-time conditions. This offers an ideal basis for appli-
cations such as:

– very fast digital closed-loop control systems

– very fast open-loop control systems

– data acquisition with very fast online analysis of the measurement data

– monitoring of complex trigger conditions and many more
ADwin systems are optimized for processes which need very short process cycle
times of one millisecond down to some microseconds.

System features The ADwin system is equipped with analog and digital inputs and outputs, a fast pro-
cessor (32-bit floating point signal processor) and local memory. The processor is
responsible for the whole real-time processing in the system. The applications run inde-
pendent of the PC and its workload.

Processor The processor of the ADwin system processes each measurement value at once.
In one cycle you can acquire the status of the inputs, process the status with the help
of any mathematical functions, and react to the results, even at very fast process cycle
times of some microseconds. This results in a perfect and logical work sharing: The PC
executes a program for visualizing of data, for input and operation of the processes,
togeher with access to networks and data bases, while the processor of the ADwin sys-
tem executes all tasks which require real-time processing concurrently.

Real-time operating system The operating system for the DSP of the ADwin system has been optimized to achieve
the fastest response times possible. It manages parallel processes in a multitasking
environment. Low priority processes are managed by time slicing. Specified high prior-
ity processes interrupt all low priority processes and are immediately and completely
executed (preemptive multitasking). High priority processes are executed as time-con-
trolled or event-controlled processes (external trigger).

Timing The built-in timer is responsible for the precise scheduling of high priority processes. It
has a resolution of 25 nanoseconds (3,3ns since processor T11). The ADwin systems
are characterized by an extremely short response time of only 300 nanoseconds during
the change from a low to a high priority process. A continously running communication
process enables a continous data exchange between the ADwin system and the PC
even while applications are active. The communication has no influence on the real-
time capability of the ADwin system, even so, it is possible to exchange data at any
time.

ADbasic The real-time development tool ADbasic gives the opportunity to create time-critical
programs for ADwin systems very easily and quickly. ADbasic is an integrated devel-
opment environment under Windows with possibilities of online debugging. The famil-
iar, easy-to-learn BASIC instruction syntax has been extended by many more functions,
in order to allow direct access to inputs and outputs as well as by functions for process
control and communication with the PC.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 3

System descriptionADwin
Communication between ADwin system and PC

InterfacesThe ADwin system is connected to the PC via an USB or Ethernet interface. After
power-up the ADwin system is booted from the PC via this interface. Afterwards the
ADwin operating system is waiting for instructions from the PC which it will process.

Instruction processingThere are two kinds of instructions: On the one hand instructions, which transfer data
from the PC to the ADwin system, for instance "load process", "start process" or "set
parameter", on the other hand instructions which wait for a response from the ADwin
system, for instance "read variables" or "read data sets". Both kinds of instructions are
processed immediately by the ADwin system, which means immediate and complete
responses. The ADwin system never sends data to the PC without request! The data
transfer to the PC is always a response to an instruction coming from the PC. Thus,
embedding the ADwin system into various programming languages and standard soft-
ware packages for measurements is held simple, because they have only to be able to
call functions and process the return value.

Software interfacesUnder Windows 95/98/NT/ME/2000/XP/Vista you can use a DLL and an ActiveX inter-
face. On this basis the following drivers for development environments are available:
.NET, Visual Basic, Visual-C, C/C++, Delphi, VBA (Excel, Access, Word), TestPoint,
LabVIEW / LabWINDOWS, Agilent VEE (HP-VEE), InTouch, DIAdem, DASYLab,
SciLab, MATLAB.
Versions for Linux, Mac OS and Java are available, too.
The simple, instruction-oriented communication with the ADwin system enables several
Windows programs to access the same ADwin system in coordination at the same time.
This is of course a great advantage when programs are being developed and installed.

Fig. 1 – Concept of the ADwin systems

System description ADwin

4 ADwin-Gold USB / ENET, manual version 4.3, January 2012

2.2 The ADwin-Gold System
Processor and memory The ADwin-Gold system is equipped with the digital 32 bit signal processor T9 (SHARC

ADSP 21062) from Analog Devices with floating point and integer processing. It is
responsible for the complete measurement data acquisition, online processing, and sig-
nal output, and makes it possible to process instantaneously sample rates of up to sev-
eral 100 kHz.
The on-chip memory with 256 KiB has a very short access time of 25 ns and is large
enough to hold the complete ADwin operating system, the ADbasic processes and all
variables.
In order to get maximum access times, all inputs and outputs are memory-mapped in
the external memory section of the DSP. For buffering larger quantities of data the DSP
uses an external memory of 16 MiB (DRAM; optional 64 MiB).

Analog inputs The system has 16 analog inputs with BNC plugs (alternatively: DSub connectors),
which are divided into two groups each being connected to one multiplexer. These two
outputs are optionally converted by a 14-bit or 16-bit analog-to-digital converter (ADC),
(see Fig. 2 "Block diagram of the ADwin-Gold). With the 14-bit ADCs it is possible to
sample very fast, with the 16-bit ADCs highly accurately.

Fig. 2 – Block diagram of the ADwin-Gold

Analog outputs The standard version of the ADwin-Gold system is equipped with 2 analog outputs
(optional 8) with an output voltage range of -10V … +10V and a 16-bit resolution. You
can synchronize the output of the voltage of all DACs per software.

Digital inputs and outputs 32 digital inputs or outputs are available on two 25-pin D-Sub connectors. They can be
programmed in groups of 8 as inputs or outputs. The inputs or outputs are TTL-com-
patible.

Trigger input (EVENT) The ADwin-Gold has a trigger input (EVENT, see also chapter 5.2 "Digital Inputs and
Outputs"). Processes can be triggered by a signal and are completely processed after-
wards. (see ADbasic manual, chapter "Structure of the ADbasic Program").
All analog data inputs and outputs of the system are differential.
The connection between ADwin-Gold system and computer is made via the USB or
Ethernet interface (depending on the version you have purchased).

8 Bit

8 Bit

A/CLK, B/DIR, CLR/LATCH four 32 bit counter

16bit / 5µs

16bit / 5µs

14bit / 0,5µs

14bit / 0,5µs

A
D

A
D

A
D

A
D

MUX

MUX

IN 1
IN 3
IN 5
IN 7
IN 9

IN 11
IN 13
IN 15

IN 2
IN 4
IN 6
IN 8

IN 10
IN 12
IN 14
IN 16

D
A

 SHARC™
ADSP 2106x

from Analog Devices
with 16 or 64 MB
external DRAM

D
A

16bit

16bit

OUT 1

OUT 2

32 digital I/Os,
programmable
as in- or output

8
I/O

8
I/O

8
I/O

8
I/O

C
O

N
N

. 1
(D

IG
IT

AL
 IN

)

C
O

N
N

. 2
(D

IG
IT

AL
 O

U
T)

EVENT

PGA

G = 1, 2, 4, 8

+

-

PGA

G = 1, 2, 4, 8

+

-

D
A

16bit

OUT 8

. .
 .

. .

. .
 .

. .

OP
+

-

OP
+

-

OP
+

-

. .
 .

. .

8 Bit

8 Bit

C
O

N
N

. 3
(C

N
TR

 IN
,

di
ffe

re
nt

ia
l)

to PC
USB-/
ENET-

controller

Note: shaded components are optional.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 5

System descriptionADwin
Standard deliveryThe standard delivery items for the ADwin-Gold system:

– the ADwin-Gold system with USB or Ethernet interface,

– a USB cable or a cross-over Ethernet cable from the PC to the Gold device
(length about 1.8m).

– the power adapter: a three-pin power supply cable, which prevents the possibility
of mismatch, at a slot metal sheet with socket connector,

– the power supply cable from the power adapter to the system,

– the ADwin CDROM,

– the manual "Driver Installation",

– this hardware manual.

2.2.1 Options (no upgrades possible)
The following options are available:

– Gold-D: All inputs and outputs have DSub-connectors, including the analoge
inputs (instead of BNC plugs).

– Gold-DA: 6 additional analog outputs (differential) with a 16-bit DAC each.

– Gold-CO1: counter option with four 32 bit counters, which can optionally be used
for period width measurement, as impulse counters or as up/down counters with
clock/direction or four edge evaluation for quadrature encoders.

– Gold-CAN: 4 decoders for use with incremental encoders with SSI interface, 2
CAN interfaces (both either high speed or low speed) and 2 RSxxx interfaces
(RS232, RS485). This option is available in combination with the option Gold-D
only.

– GOLD-MEM-64: external memory with 64MiB instead of 16MiB and 512KiB
internal CPU memory instead of 256KiB.

– Gold-Boot: Flash-EPROM boot loader for stand-alone operation without PC (only
in combination with the Gold-ENET).

If not excluded above, all additional options can be combined with each other.

2.2.2 Accessories

– ADbasic, real-time development tool for all ADwin systems

– ADwin-Gold-pow: external power supply (necessary for notebook operation)

– Gold-Mount: kit for installation of the ADwin-Gold system on a DIN rail.

– Single cable-connector for a self-made external power supply cable.

Operating Environment ADwin

6 ADwin-Gold USB / ENET, manual version 4.3, January 2012

3 Operating Environment
The ADwin-Gold electronic is installed in a closed aluminum enclosure and it is only
allowed to operate it in this enclosure. With the necessary accessories the system can
be operated in 19-inch-enclosures or as a mobile system (e.g. in cars). See also
chapter 2.2.2 "Accessories").

Earth protection The ADwin-Gold device must be earth-protected, in order to

– build a ground reference point for the electronic

– conduct interferences to earth.
Connect the GND plug, which is internally connected with the ground reference point
and the aluminum enclosure, via a short low-impedance solid-type cable to the central
earth connection point of your device.

Galvanic connection The power supply cable from the power adapter is the galvanic connection between the
computer and the ADwin-Gold.
The version with USB interface has a galvanic connection to the computer or where
appropriate also via the power supply.
The data lines at the version with Ethernet interface are optically isolated, but the
ground potentials are connected, because the shielding of the Ethernet connector (RJ-
45) is connected to GND.

Excluding transient currents Transient currents, which are conducted via the aluminum enclosure or the shielding,
have an influence on the measurement signal.
Please, make sure that the shielding is not reduced, for instance by taking measures
for bleeding off interferences, such as connecting the shielding to the enclosure just
before entering it. The more frequently you earth the shielding on its way to the machine
the better the shielding will be.
Use cables with shielding on both ends for signal lines. Here too, you should reduce
the bleeding off of interferences via the ADwin-Gold aluminum enclosure by using cable
shield ground clamps.

BNC cables The shielding of BNC cables is normally used as differential ground and looses there-
fore the shielding effect. So BNC cables are influenced by interferences when differen-
tial measurements are executed. For signal and data transfer outside of an enclosure
it is necessary to use twisted pair data transfer cables, whose channels are shielded,
too.

Protection low voltage The ADwin-Gold is externally operated with a protection low voltage of 10V to 35V;
internally it is operated with a voltage of +5V and ±15V against GND. It is not life-threat-
ening. For operation with an external power supply, the instructions of the manufacturer
applies.

Ambient temperature The ADwin-Gold is designed for operation in dry rooms with a room temperature of
+5°C … +50°C and a relative humidity of 0 … 80% (no condensation, see Annex).

Chassis temperature The temperature of the chassis (surface) must not exceed +60°C, even under extreme
operating conditions – e.g. in an enclosure or if the system is exposed to the sun for a
longer period of time. You risk damages at the device or not-defined data (values) are
output which can cause damages at your measurement device under unfavorable cir-
cumstances.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 7

Initialization of the HardwareADwin
4 Initialization of the Hardware
If you start initializing do not connect any cables to the ADwin-Gold before you have
executed the following steps:

– Carry out completely the installation of the drivers and the power supply at the
computer or notebook (see manual: "ADwin Driver Installation").

– connect the ADwin-Gold only with the computer or notebook (s.b.).

– Read chapter 5 "Inputs and Outputs" in this manual.

– Begin now with the connection of the inputs and outputs.
Please take into account that there is a galvanic connection between the ADwin-Gold
system and the computer via power supply cable, USB and Ethernet lines (see
chapter 3, section "Galvanic connection").

Providing the power supplyPlease pay attention that reliable power source is supplied.
This concerns the computer (standard delivery). Otherwise also the external power sup-
ply, if operated in a car, the battery voltage.

Power supplyThe power supply connection of the ADwin-Gold with 12V (see Annex, Technical Data)
is made via the built-in connector, at left next to the power switch or above the GND plug
(see Fig. 4). Connect the 3-pin subminiature connector there. For the pin assignment
see the following picture:

Fig. 3 – Power supply connector (male)

For using the system with an external power supply unit you need the subminiature con-
nector described above. The connector is provided by the following manufacturer under
the article number 712 299-0406-00-03 (Series 712):

Franz Binder GmbH + Co. elektrische Bauelemente KG
Rötelstrasse 27
74172 Neckarsulm,
Phone: ++49-7132 / 325-0
www.binder-connector.de

When using the system with a notebook, power has to be supplied by a separate power
supply, (see chapter 2.2.2 on page 5). Please pay attention to the fact that it is suffi-
ciently dimensioned.
If using current-limiting power supplies, please pay attention to the fact, that after power-
up the current demand can be a multiple of the idle current. More detailed information
can be found in the Technical Data (Annex).

In case of a power failure all data which have not been saved are lost. Not-defined data
(values) can under unfavorable circumstances cause damages to other equipment.

ConnectionIf you have completed the installation of the ADwin drivers and the configurations in the
ADbasic menu "Options\Compiler", then connect the USB or Ethernet data transfer
cables and the power supply cable. Then start the computer.

Power-upIn order to avoid switching off the system inadvertently, the switch is equipped with a
blocking device. Pull the switch a little bit, then pull it into the direction "Power". Now the
device is switched on and the LED lights up in red.

BootingStart ADbasic and boot the ADwin system by clicking on the boot button .

+10...35VPE

GND

1
2

3

http://www.binder-connector.de

Initialization of the Hardware ADwin

8 ADwin-Gold USB / ENET, manual version 4.3, January 2012

The flashing LED (green colored now) and the display in the status line: "ADwin is
booted" show that the operating system has been loaded and ADbasic can connect
the ADwin system. (If not, please check the connectors first).

Programs with ADbasic Programming the ADwin systems is described more detailed in the ADbasic manual.
Instructions for access to ADwin-Gold I/Os are described in chapter 12 on page 43.
Start with the programming examples in the ADbasic Tutorial.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 9

Inputs and OutputsADwin
5 Inputs and Outputs

ConnectorsAll inputs and outputs may only be operated according to the specifications given (see
Annex A.1 Technical Data). In case of doubt, ask the manufacturer of the device, to
which you want to connect the ADwin-Gold system.

Open-ended inputs can cause errors - above all in an environment where interferences
may occur. For your safety, set the inputs which you do not use to a specified level (for
instance GND) and also connect them as close to the connector as possible. Don't con-
nect open ended cables to the inputs; open ended cables may cause spikes at the
inputs.
An exception is the event input, which has already an internal pull-up resistance (10 kΩ).
The inputs and outputs of the ADwin-Gold II basic version is decscribed on the following
pages:

– 16 analog inputs via 2 multiplexers (page 10)

– 2 analog outputs (page 11)

– 32 digital inputs/outputs (page 15)

Fig. 4 – Schematic of ADwin-Gold (USB version)

CONN. 1 (DIGITAL IN)

CONN. 2 (DIGITAL OUT) POWER

GND

CONN. 3

CONN. 4

ADwin-GOLD
(CNTR IN, diff.)

 (OUT 5...8)

IN 1 IN 3 IN 5 IN 7 IN 9 IN 11 IN 13 IN 15 OUT 1 OUT 3

IN 2 IN 4 IN 6 IN 8 IN 10 IN 12 IN 14 IN 16 OUT 2 OUT 4

USB

analog
inputs

analog
outputs

power
supply

USB
connector

GND/PE
connector

digital
inputs/outputs

additional
inputs/outputs

Inputs and Outputs ADwin

10 ADwin-Gold USB / ENET, manual version 4.3, January 2012

5.1 Analog Inputs and Outputs
In order to operate the system without any interferences, isolated BNC connectors are
necessary. Otherwise there will be the danger of damages caused by ESD or short cir-
cuits at the inputs. This will be the case when using not isolated BNC T-pieces.

The ADwin-Gold device has to be connected to earth, in order to execute measurement
tasks without any interferences. Connect the GND plug via a low-impedance solid-type
cable with the central earth connection point of your device.
The power supply from the power adapter at the computer also connects the earth of
the ADwin-Gold system with the earth of the computer. If you do not operate the PC and
the ADwin-Gold system in the same place, you should not use the power supplied by
the PC but an external power supply unit which is earth-free, in order to avoid influences
by different ground reference potentials.
In addition to the description of the inputs and outputs you will find notes below for the
conversion of digits into voltage values and for the input settings of the analog inputs.

Standard instructions For fast and easy programming there are standard instructions available in the compiler
ADbasic, which enable a user to easily measure or output data; see ADC (page 46) and
DAC (page 45). Use other instructions only if extremely time-critical or special tasks
require to do so.

5.1.1 Analog Inputs

Multiplexer The system has 16 analog inputs IN1 … IN16. The inputs with odd numbers (1, 3, …
15) are allocated to multiplexer 1, those with even numbers (2, 4, … 16) to
multiplexer 2. The output of each multiplexer is connected to both a 14 bit-ADC and a
16 bit-ADC (see also "Block diagram of the ADwin-Gold", page 4).

Differential The analog inputs are differential. For each of the measurement channels there is a
positive and a negative input, between them the voltage difference is measured (but not
free of potential). Both, the positive and negative input have to be connected.

Fig. 5 – Schematic of ADwin-Gold-D (ENET version)

GND

PC

ADwin-Gold

ANALOG OUT

ANALOG IN

CO POWER IN

DIO 00-15 (IN)

DIO 16-31 (OUT)

CAN 1.1

CAN 1.2

CAN 2

COM1

COM2

CO1 CO2 CO3 CO4

POWER

analog
inputs/outputs

power-
supply

ENET
connector

GND/PE
connector

digital
inputs/outputs

additional
inputs/outputs

ADwin-Gold USB / ENET, manual version 4.3, January 2012 11

Inputs and OutputsADwin
The inputs are equipped with male BNC-plugs, which are arranged in 2 rows; the Gold-
D option has the inputs connected to the DSub-connector ANALOG IN. At the BNC-
plugs, the positive input is the inner conductor, the negative input is the outer conductor.

Fig. 6 – Pin assignment of analog channels with Gold-D option

Please note, that the inputs do need a mass connection between the system’s GND-plug
and the signal source. This is in addition to the connections to the positive and negative
input.

Fig. 7 – Input circuitry of an analog input

16-bit and 14-bit
measurements

You can convert the signals at the multiplexer outputs optionally with a 14-bit or a 16-bit
analog-to-digital-converter (ADC), (see Fig. 2 "Block diagram of the ADwin-Gold"). You
are measuring with

– the 14-bit ADC very fast (max. 0.5µs, resolution 1.221mV)

– the 16-bit ADC very accurately (max. 5µs, resolution 305µV).

ADC instructionThe instructions ADC() for the 16-bit ADC and ADC12() for the 14-bit ADC execute a
complete measurement with one of the ADCs on the analog input. The ADC instructions
consider for instance the settling of the multiplexer and assure perfect measurements
(see page 46).

Please pay attention to a low internal resistance of the power supply unit (of the input
signals), because it may have influence on the measuring accuracy. If this is not possi-
ble:

– Depending on the output resistance a linear error is caused.
You can compensate this by multiplying the measurement value with a corre-
sponding factor and get a sort of recalibration.

– From approx. 3kΩ upwards the multiplexer settling time extends.
The waiting time defined in the standard instructions ADC and ADC12 is then too
short, so that imprecise values are recalled. In this case please use the instruc-
tions described in chapter 5.3.1.

5.1.2 Analog Outputs
The system has 2 analog outputs (OUT1, OUT2) with BNC-plugs; with Gold-D option the
outputs are located on the DSub connector ANALOG OUT (see Fig. 6). A digital-to-ana-
log converter (DAC) is allocated to each of the outputs.

12345678910111213141516171819

202122232425262728293031323334353637

IN
 1

 (+
)

IN
 2

 (+
)

IN
 3

 (+
)

IN
 4

 (+
)

IN
 5

 (+
)

IN
 6

 (+
)

IN
 7

 (+
)

IN
 8

 (+
)

IN
 9

 (+
)

IN
 1

0
(+

)
IN

 1
1

(+
)

IN
 1

2
(+

)
IN

 1
3

(+
)

IN
 1

4
(+

)
IN

 1
5

(+
)

IN
 1

6
(+

)
R

ES
ER

VE
D

R
ES

ER
VE

D
D

G
N

D

IN
 1

 (-
)

IN
 2

 (-
)

IN
 3

 (-
)

IN
 4

 (-
)

IN
 5

 (-
)

IN
 6

 (-
)

IN
 7

 (-
)

IN
 8

 (-
)

IN
 9

 (-
)

IN
 1

0
(-

)
IN

 1
1

(-
)

IN
 1

2
(-

)
IN

 1
3

(-
)

IN
 1

4
(-

)
IN

 1
5

(-
)

IN
 1

6
(-

)
R

E
SE

R
VE

D
R

E
SE

R
VE

D

ANALOG IN

BNC-

jackIN x
330k

330k

InAmp+

-

to
ADC

MUX

PGA

G = 1, 2, 4, 8

+

-GND

Inputs and Outputs ADwin

12 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Additional outputs see chapter 7 "DA Add-On".

DAC instruction The standard instruction DAC(number, value) (see page 45) checks each of the val-
ues if it exceeds or falls below of the 16-bit value range (0...65535). If the value is in the
16-bit value range, the indicated value is output on the output number. If it is not in the
value range the maximum or minimum values are output.

5.1.3 Calculation Basis

Voltage range The voltage range of the ADwin-Gold at the analog inputs and outputs is between –10V
to +10V (bipolar 10V).

Allocation of digits to
voltage

The 65536 (216) digits are allocated to the corresponding voltage ranges of the ADCs
and DACs insofar that

– 0 (zero) digits correspond to the maximum negative voltage and

– 65535 digits correspond to the maximum positive voltage
The value for 65536 digits, exactly 10 Volt, is just outside the measurement range, so
that you will get a maximum voltage value of 9.999695V for the 16-bit conversion and
a voltage value of 9.998779V for the 14-bit conversion.

Fig. 8 – Zero offset in the standard setting of bipolar 10 Volt

Zero offset UOFF In the bipolar setting you will get a zero offset, also called offset UOFF in the following
text.
For the voltage range of −10V … +10V applies:

UOFF = −10V

12345678910111213141516171819

202122232425262728293031323334353637

O
U

T
1

O
U

T
2

D
G

N
D

G
N

D
 1

G
N

D
 2

ANALOG OUT

R
ES

ER
VE

D
R

ES
ER

V
ED

+10

-10

0 32768 65536
0

[V]

[Digit]

ADwin-Gold USB / ENET, manual version 4.3, January 2012 13

Inputs and OutputsADwin
Gain factor kvADwin-Gold has a programmable gain (PGA), with which you can amplify the input volt-

age by the factors 1, 2, 4, and 8. At the same time the measurement range gets smaller
by the corresponding gain factor kv (see Annex "Technical Data").
Please note that upon applications with kv >1 the interference signals are amplified
respectively.

Quantization level ULSBThe quantization level (ULSB) is the smallest digitally displayable voltage difference and
is equivalent to the voltage of the least significant bit (LSB). It is different for the two
ADCs:

– 16-bit ADC: ULSB = 20V / 216 = 305.175µV

– 14-bit ADC: ULSB = 20V / 214 = 1220.7µV
The measured 16-bit value of the ADC is returned in the lower word of the register. A
DAC value, which is to be output, has to be available there.

Fig. 9 – Storage of the ADC/DAC bits in the memory

In order to compare the measurement values of the 14-bit ADC with the values of the
16-bit ADC, the converted value is written left-aligned into the lower word of the register
at the 14-bit ADC. Therefore the lower 2 bits are always 0 (zero).
The 16384 digits of the 14-bit ADC are mapped to the 65536 digits of the 16-bit ADC.
Thus 4 digits of the 16-bit ADC are equivalent to one digit of the 14-bit ADC.
Therefore the following equations can be used for both ADC types:

Conversion Digit to Voltage

DACFor a DAC:

ADCFor an ADC (14-bit and 16-bit):

Tolerance Ranges
Slight variations regarding the calculated values may be within the tolerance range of the
individual component. Two kinds of variations are possible (in LSB), which are indicated
in this hardware manual:

INL– The integral non-linearity (INL) defines the maximum deviation from the ideal
straight line over the whole input voltage range.

DNL– The differential non-linearity (DNL) defines the maximum deviation from the ideal
quantization level.

5.2 Digital Inputs and Outputs
Digital inputs/outputsOn two 25-pin D-SUB sockets (DIO 00…DIO 31) there are 32 digital inputs or outputs.

They are programmable in groups of 8 as inputs or outputs.
After power-up of the device, all 4 groups are configured as inputs.

Bit No. 31…16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
32-bit-
memory

0 16-bit value of the 16-bit ADC / DAC in the lower word
0 14-bit value of the 14-bit ADC in the lower word 0 0

UOUT Digits ULSB UOFF+⋅=

Digits
UOUT UOFF–

ULSB
---=

Digits
kv UIN⋅ UOFF–

ULSB
--=

UIN
Digits ULSB UOFF+⋅

kv
---=

Inputs and Outputs ADwin

14 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Fig. 10 – Pin assignment digital IOs

The digital inputs are TTL-compatible and not protected against over voltage.
Do not use pins marked as "reserved". They are planned for changes and expansions
and can cause damages to your system if you do not pay attention to this fact.

Trigger input (EVENT) The ADwin-Gold is equipped with an external trigger input (EVENT). With this trigger
input processes are triggered by an external signal (trigger) with rising edge and can
completely and immediately be processed, (see also ADbasic manual, chapter: "Pro-
gram Structure").

Programming Instructions to program analog inputs are described starting from page 504. The
instructions are defined in the include file <ADwinGoldII.inc> and are described in
the online help, too.

CONF_DIO(12) The instruction CONF_DIO(12) configures DIO 15:00 as digital inputs and DIO 31:16
as digital outputs.

Only in this configuration will you be able to totally access the inputs and outputs with
the above instructions. About programming under other configurations the following
chapter will give you more detailed information: chapter 5.3 "Time-Critical Tasks" (see
also tutorial).

5.3 Time-Critical Tasks
For extremely time-critical tasks you can use instructions with which you have direct
access to the control and data registers of the ADC and DAC (see ADbasic manual).
These registers can be found in the memory address area of the ADSP (memory
mapped). These instructions also allow to optimize the program structure (s.b.).

Contrary to the standard instructions ADC(), ADC12() and DAC() the instructions for
direct access do not have any test routines. Before you use them we recommend to
learn more about time sequences, program structures and functions sequences in an
ADC.

5.3.1 Analog Inputs and Outputs

ADC() and ADC12() The standard instructions ADC() and ADC12() consist of a sequence of several
instructions (see below). They need a certain time for execution. The execution time is
mostly determined by the settling time of the multiplexer and the conversion time.

DIO-00…DIO-15 DIO-16…DIO-31

CONN. 1
(male)

13121110987654321

252423222120191817161514

D
IG

IN
-0

0
D

IG
IN

-0
2

D
IG

IN
-0

4
D

IG
IN

-0
6

D
IG

IN
-0

8
D

IG
IN

-1
0

D
IG

IN
-1

2
D

IG
IN

-1
4

EV
EN

T
G

N
D

D
IG

IN
-0

1
D

IG
IN

-0
3

D
IG

IN
-0

5
D

IG
IN

-0
7

D
IG

IN
-0

9
D

IG
IN

-1
1

D
IG

IN
-1

3
D

IG
IN

-1
5

G
N

D

R
E

SE
R

VE
D

R
ES

ER
VE

D

DIO 00-15

CONN. 2
12345678910111213

141516171819202122232425

G
N

D
+5

V
(o

ut
pu

t,
m

ax
. 0

.1
A)

D
IG

O
U

T-
14

D
IG

O
U

T-
12

D
IG

O
U

T-
10

D
IG

O
U

T-
08

D
IG

O
U

T-
06

D
IG

O
U

T-
04

D
IG

O
U

T-
02

D
IG

O
U

T-
00

G
N

D

D
IG

O
U

T-
15

D
IG

O
U

T-
13

D
IG

O
U

T-
11

D
IG

O
U

T-
09

D
IG

O
U

T-
07

D
IG

O
U

T-
05

D
IG

O
U

T-
03

D
IG

O
U

T-
01

R
ES

ER
VE

D
R

ES
ER

VE
D

DIO 16-31

Function Instructions
Configure Conf_DIO

Read input values Digin, Digin_Word

Set output values Digout_Word, Digout_Word
Clear_Digout

ADwin-Gold USB / ENET, manual version 4.3, January 2012 15

Inputs and OutputsADwin
SET_MUX()
… 'wait for settling of the

'multiplexer
START_CONV()
WAIT_EOC() 'wait for end of conversion
READADC() 'or READADC12() at ADC12()

Program structureYou can use (or extend) the waiting times caused by the standard instructions for other
purposes. If you apply these instructions skillfully you may be able to execute faster
measurements.
It is important to set the START_CONV() instruction (page 54) in a sufficient time-delay
from the SET_MUX() instruction (page 52), in order to consider the multiplexer settling
time.
Use the waiting times for instance for arithmetic operations and save CPU time:

– Settling time of the multiplexer: At a maximum voltage jump of 20 Volt it is 6.5µs
(max.) for the 16-bit ADC and 2.5 µs for the 14-bit ADC.

– Conversion time of the ADC: Its is 0.5 µs for the 14-bit ADC and 5µs for the 16-
bit ADC.

Direct Register Access

ADCA measurement can be executed very fast, when you directly access the control and
data registers of the ADC.

DACIf you have made sure that at the analog outputs the values are within the range limits,
you can write very quickly into one or more DAC registers with direct access to the hard-
ware registers, and you can synchronously start the output, (see instructions Peek and
Poke in the ADbasic manual).
The hardware addresses for direct access to control and data registers are described in
the annex.

5.3.2 Digital Inputs and Outputs

After power-up of the device all 4 connection groups are configured as inputs; this cor-
responds to the instruction CONF_DIO(0). The following table shows how the inputs
and outputs (IN, OUT) are configured when you use the value of the first column as
instruction argument.

CONF_DIO() DIO31:24 DIO23:16 DIO15:08 DIO07:00

0 IN IN IN IN

1 IN IN IN OUT

2 IN IN OUT IN

3 IN IN OUT OUT

4 IN OUT IN IN

5 IN OUT IN OUT

6 IN OUT OUT IN

7 IN OUT OUT OUT

8 OUT IN IN IN

9 OUT IN IN OUT

19 OUT IN OUT IN

11 OUT IN OUT OUT

12 OUT OUT IN IN

13 OUT OUT IN OUT

14 OUT OUT OUT IN

15 OUT OUT OUT OUT

Applicable
instructions:

DIGOUT_WORD, CLEAR_DIGOUT,
SET_DIGOUT DIGIN_WORD, DIGIN

Inputs and Outputs ADwin

16 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Please pay attention to the following restriction:

Only if the inputs/outputs are configured with CONF_DIO(12) (see pin assignmenton
page 14) will you be able to fully access the inputs/outputs with the instructions
DIGOUT_WORD, SET_DIGOUT, CLEAR_DIGOUT, DIGIN_WORD, DIGIN.
For any other configuration you have to read out or write into the corresponding hard-
ware register (see instructions Peek and Poke in the ADbasic manual). The hardware
addresses for direct register access are described in the annex.

Instruction is
applicable for
DIOnn, at

Configuration "OUT"

Configuration "IN"
At configuration "OUT" the register
contents of this byte is returned

Fig. 11 – Overview of the configuration with CONF_DIO

CONF_DIO() DIO31:24 DIO23:16 DIO15:08 DIO07:00

ADwin-Gold USB / ENET, manual version 4.3, January 2012 17

CalibrationADwin
6 Calibration

6.1 General Information
The 2 digital-to-analog (DAC, optional 8) and the 4 analog-to-digital (ADC) converters
of the ADwin-Gold systems have been calibrated in factory. In accordance with the reg-
ulations for keeping the measurement accuracy in your field of application, the systems
must be calibrated in regular time intervals.
You calibrate the system with the program <GoldCalib.exe>; at standard installation
the path is <C:\ADwin\Tools\ADwin-Gold>.

ToolsThe following tools are necessary for the calibration:

– A digital multimeter (DMM) with an accuracy of
• 30µV when using 16-bit converters
• 120µV when using 14-bit converters

– A reference voltage source with an accuracy of
• 30µV when using 16-bit converters
• 120µV when using 14-bit converters

– connecting cables from the inputs/outputs to the reference voltage source and to
the measurement device (recommended: BNC cables).

6.2 Calibrating
Connect your ADwin-Gold system with the computer and configure it according to the
program <ADconfig.exe>.

Calibration has to be made when the ADwin-Gold system reaches its operating temper-
ature. With a power-up temperature of the device of approx. 20 to 25 degrees Celsius
(room temperature), the system reaches the operating temperature approx. 30 minutes
after power-up.

Step 1Start the calibration program <GoldCalib.exe>. The window "ADwin-Gold-
ENET/USB Calibration Tool" appears.

Choose the device number of the system you want to calibrate and confirm by clicking
on "OK".
You will get a warning when you haven’t chosen an ADwin-Gold system or one of an
older firmware version. You can ignore the warning with "Yes" or return to the previous
window with "No".
An overview window appears. In the header line the device number you have selected
is shown.

Calibration ADwin

18 ADwin-Gold USB / ENET, manual version 4.3, January 2012

The upper field shows the current measurement values at the inputs IN1 and IN2, mea-
sured each by the 16-bit and the 14-bit ADC.
Select in the lower field left the DAC which you wish to calibrate and at right the ADC.
The measurement value at the selected ADC is highlighted. Below you will find the cal-
ibration settings for Offset and Gain of the DAC and the ADC. There you can directly
enter values. With "Calibrate DAC" or "Calibrate ADC" you start the calibration
of the selected converter.
In the dialog box "Test Output" you can enter a voltage value, which is automatically
output at the converter/output you have selected earlier.
Every input you make is immediately transferred to the ADwin-Gold system. If you close
the program with "Exit", the new settings remain. With "Undo&Exit" you undo all
inputs and you exit the calibration program (that means the original settings are trans-
ferred to the ADwin-Gold system).
"Diagram" displays in a graph the accuracy of the current calibration setting. You print
a protocol of the settings with "Print Calibration".
Calibrate the converters in the order you like (only with reference voltage source). The
calibration of a converter is effected in 3 steps; you can switch between the windows of
the steps by using the forward/backward buttons.

Calibration is also possible without reference voltage source, but it will not be so pre-
cise. Calibrate first the DACs and then the ADCs.

Step 2 The 3 levels for calibrating a converter are described below, for the DAC in the left col-
umn and for the ADC in the right column.

1. Connect the external device (DMM / voltage source):
Select the corresponding key "Calibrate ..." for calibrating a converter; the
first window appears.:

Connect a DMM to the selected output. Connect the voltage source (or a cali-
brated DAC output) to the selected
input.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 19

CalibrationADwin
Please note Fig. 4 "Schematic of ADwin-Gold (USB version)".
Select "Next Step >>".

2. Setting the offset

Select "Next Step >>".

3. Setting the gain

:

The calibration for this converter has finished. Select "OK". Repeat step 2 for the
other converters if necessary.

Step 3With a diagram (button Diagram in the overview window) you can check the accuracy
of the calibration. First connect any 2 outputs with the inputs IN1 and IN2. Select in the
diagram one of the inputs and the corresponding converter.

Adjust the offset value at the scrollbar in
such a manner that your digital multim-
eter displays -10 V.

Set your voltage source to 0 V.The set-
ting of the ADC to this value is made
automatically.
Adjust the offset value at the scrollbar in
such a manner that the setpoint at the
ADC is displayed in the overview win-
dow.

Adjust the offset value at the scrollbar in
such a manner that your digital multim-
eter displays 9.375V.

Set your voltage source to 9.375 V (set-
point). The setting of the ADC to this
value is made automatically.
Adjust the offset value at the scrollbar in
such a manner that the setpoint at the
ADC is displayed in the overview win-
dow.

Calibration ADwin

20 ADwin-Gold USB / ENET, manual version 4.3, January 2012

The program outputs the values 0...65535 digits on both DACs, compares them to the
measured input values and displays the deviation in graphs.
The deviation should be less than 5 digits.
With Close you return to the overview window.

Step 4 With "Print Calibration" you can print a protocol of the specified calibration
data.
In the open window you can enter different information which will be presented in your
printout (for a later allocation to the protocol). With "Print" you start printing; the pro-
gram automatically returns to the overview window.
In the protocol you will find the calibration settings of all inputs and outputs for gain and
offset as well as the date of print.

Step 5 The calibration is finished.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 21

DA Add-OnADwin
7 DA Add-On

ConnectorsWith the DA add-on you have 8 analog outputs in total with a resolution of 16 bit (and
a DAC each).
In the standard version two of these outputs go from DAC 3 and DAC 4 to the BNC plugs
OUT 3 and OUT 4. The other 4 outputs connect DAC 5...DAC 8 to the pins 1...4 and
14...17 of the 25-pin D-SUB socket CONN4 (see figure).
With the Gold-D option all additional outputs are connected to the pins of the DSub
socket ANALOG OUT.

Fig. 12 – Pin assignment of the DA add-on

Programming and
calibration

You program and calibrate the additional DACs like the DAC 1 and DAC 2 (see
chapter 5.1, chapter 6 and chapter 12).

standard version Gold-D Option

CONN. 4
12345678910111213

141516171819202122232425

DA
C

 #
8

DA
C

 #
7

DA
C

 #
6

DA
C

 #
5

G
N

D
 D

AC
 #

8
G

N
D

 D
AC

 #
7

G
N

D
 D

AC
 #

6
G

N
D

 D
AC

 #
5

RE
S

ER
VE

D
R

ES
ER

VE
D G
N

D
 3

G
N

D
 4

G
N

D
 5

G
N

D
 6

G
N

D
 7

G
N

D
 8

O
U

T
3

O
U

T
4

O
U

T
5

O
U

T
6

O
U

T
7

O
U

T
8

D
G

N
D

12345678910111213141516171819

202122232425262728293031323334353637

ANALOG OUT
R

ES
ER

V
ED

R
ES

ER
VE

D

CO1 Counter Add-On ADwin

22 ADwin-Gold USB / ENET, manual version 4.3, January 2012

8 CO1 Counter Add-On
The counter add-on Gold-CO1 (ordering option) has four 32-bit up/down counters with
four-edge-evaluation.
The technical data of the counter add-on CO1 is described in the annex A.1.

8.1 Hardware
The counter add-on Gold-CO1 has four 32-bit up/down counters with four-edge-evalu-
ation. You can configure and read out the counters individually as well as all together.
(The block diagram shows the design of a single counter).

Latch A and B The counters can be internally or externally clocked and are read out via accompanying
latches. All counters have each a Latch A and a Latch B. The counter values can be
cleared or transferred in a latch by using programming commands or (if configured)
when there is an external signal at CLR/LATCH.

There are the following operating modes: event counting (external clock) and pulse
width measurement (internal clock); see also chapter 8.3 / 8.4:

External clock input a) Event counting: Incrementing/decrementing of the counter is caused by
external square-wave signals at the inputs A/CLK and B/DIR. A positive
edge at CLR/LATCH either sets the counter to zero (CLR) or copies the
counter values into the latch (LATCH).

The following modes are possible:

1. Clock and direction: A positive edge at CLK increments or decrements the
counter values by one. The signal at DIR determines the counting direction (0 =
decrement; 1 = increment).

2. Four edge evaluation: Every edge of the signals (phase-shifted by 90 degrees)
at A/CLK and B/DIR causes the counter to increment/decrement. The counting
direction is determined by the sequence of the rising/falling edges of these sig-
nals. This mode is particularly used for quadrature encoders.

Internal clock input b) Pulse width measurement: Incrementing/decrementing of the counter is
caused by an internal reference clock generator; a signal frequency of 5
MHz or 20 MHz can be used. The square-wave signal at CLR/LATCH is
evaluated: With every positive edge the counter values are written to latch
A, with a negative edge to latch B.

You can calculate:

1. the period duration of the input signal at CLR/LATCH from the values in latch
A or latch B.

2. the pulse width and pause time from the values in latch A and latch B
The counters are controlled by ADbasic instructions via a control register (instructions,
see table in chapter 8.2).

Fig. 13 – Block diagram of the Gold-CO1 counter add-on

G

20 MHz

Control Registers

32 bit Latch B

32 bit Counter

32 bit Latch A

CLK

EN
CLR

A / CLK

A
D

w
in

-G
O

LD
 b

us

Data

Data

DataB / DIR

CLR / LATCH

DIRDIR

C
N

T_
IN

P
U

TM
O

D
E

C
N

T_
SE

T
(C

N
T_

M
O

D
E

bi
t =

 0
)

C
N

T_
C

LE
AR

C
N

T_
LA

TC
H

C
N

T_
SE

T
(C

N
T_

M
O

D
E

bi
t =

 1
)

C
N

T_
M

O
D

E

Up

4-edge
evaluation

ref.-CLK

to fref-switch of
other counters

Divider
÷ 4

C
N

T_
SE

_D
IF

F

A / CLK

B / DIR

CLR / LATCH

A / CLK

B / DIR

CLR / LATCH

C
N

T_
EN

AB
LE

4k7

12
0

4k7

4k7

12
0

12
0

ADwin-Gold USB / ENET, manual version 4.3, January 2012 23

CO1 Counter Add-OnADwin
At the inputs A/CLK, B/DIR and CLR/LATCH TTL-alike signals are necessary. More
details and limit values can be found in the "Technical Data".

Fig. 14 – Pin assignment of the CO1 add-on

In any case you have to set the input operation mode with the instruction Cnt_SE_Diff.
This is done in pairs, i.e. the counters 1 and 2 together and the counters 3 and 4 together
(see page 81).
With Rev. B2 differential operation mode can be set only, TTL operation mode (single
ended) is available from Rev. B3.

Although all inputs for the CO1 add-on have a pull-down resistor, not-connected inputs
can cause errors in an environment which is not protected against interferences. If you
do not use a counter input, connect for safety reasons both lines of the (differential) input
to a specified potential: Connect the positive input to +5V and the negative input to GND.
On the option Gold-D you can – via the connector CO Power in – supply a voltage,
which is then available at the connectors CO1…CO4, e.g. for external increment
encoder.
Please note: All minus inputs V1in (-) are galvanically connected to GND via a common
line; the minus inputs V2in (-) have such a common connection, too.

Counter inputs with TTL operation mode for Gold / Gold-D
(single-ended; mode not available with Rev. B2)

with Gold only with Gold-D only

Counter inputs with differential operation mode

CONN. 1
(male)

13121110987654321

252423222120191817161514

D
IO

-0
D

IO
-2

D
IO

-4
D

IO
-6

D
IO

-8
D

IO
-1

0
D

IO
-1

2
D

IO
-1

4
C

N
TR

 #
1

A
/ C

LK
C

N
TR

 #
1

C
LR

 /
LA

TC
H

C
N

TR
 #

2
B

/ D
IR

EV
EN

T
G

ND

D
IO

-1
D

IO
-3

D
IO

-5
D

IO
-7

D
IO

-9
D

IO
-1

1
D

IO
-1

3
D

IO
-1

5
C

NT
R

#1
 B

 /
D

IR
CN

TR
 #

2
A

/ C
LK

C
N

TR
 #

2
C

LR
 /

LA
TC

H
G

N
D

DIO 00-15

CONN. 2
12345678910111213

141516171819202122232425

G
N

D
+5

V
(o

ut
pu

t,
m

ax
. 0

.1
A)

C
NT

R
#4

 B
 /

D
IR

C
NT

R
#3

 C
LR

 /
LA

TC
H

C
NT

R
#3

 A
 /

C
LK

D
IO

-3
0

D
IO

-2
8

D
IO

-2
6

D
IO

-2
4

D
IO

-2
2

D
IO

-2
0

D
IO

-1
8

D
IO

-1
6

G
ND

C
NT

R
#4

 C
LR

 /
LA

TC
H

C
N

TR
 #

4
A

/ C
LK

CN
TR

 #
3

B
/ D

IR
DI

O
-3

1
DI

O
-2

9
DI

O
-2

7
DI

O
-2

5
DI

O
-2

3
DI

O
-2

1
DI

O
-1

9
DI

O
-1

7

DIO 16-31

CONN. 3
(male)

13121110987654321

252423222120191817161514

/C
LR

, /
LA

TC
H

C
LR

, L
AT

C
H

/B
, /

DI
R

B,
 D

IR
/A

, /
CL

K
A,

 C
LK

/C
LR

, /
LA

TC
H

C
LR

, L
AT

C
H

/B
, /

DI
R

B,
 D

IR
/A

, /
CL

K
A,

 C
LK

G
N

D

/C
LR

, /
LA

TC
H

C
LR

, L
AT

C
H

/B
, /

DI
R

B,
 D

IR
/A

, /
C

LK
A,

 C
LK

/C
LR

, /
LA

TC
H

C
LR

, L
AT

C
H

/B
, /

DI
R

B,
 D

IR
/A

, /
C

LK
A,

 C
LK

C
NT

R #1

CN
TR

#4
C

NT
R #2

CN
TR

#3

8

7

6

5

4

3

2

1

15

14

13

12

11

10

9

SSI, CLK (-)
SSI, CLK (+)
RESERVED
CLR/LATCH (-)
V2OUT(-)
CLR/LATCH (+)
V2OUT(+)

SSI, DATA (-)
B/DIR (-)
B/DIR (+)

SSI, DATA (+)
A/CLK/PWM (-)
A/CLK/PWM (+)

V1OUT(-)
V1OUT(+)

CO1, ... , CO4 (male)

CO1 Counter Add-On ADwin

24 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Fig. 15 – Pin assignment counter voltage supply (Gold-D)

8.2 Software
The functions necessary for accessing the counters can be found in the include file:

<ADwGCnt.INC>

Therefore programming has to start with the include file, so that you can use the instruc-
tions in the following table. The instructions are described in chapter 12, starting from
page 65.

Fig. 16 – Instructions of the Gold-CO1 counter add-on

With the instructions in the table matrix you are always effecting all counters (except
Cnt_Read…). Therefore pay attention to the fact which bits you are setting or deleting.
You will be able to effect every counter individually or all together.

Sequence of instructions Please configure the counters according to the following order:

1. Disable specified counter (Cnt_Enable)

2. Set operating mode (Cnt_Mode, Cnt_Set, Cnt_InputMode, Cnt_SE_Diff)

3. Clear counter (Cnt_Clear)

4. Enable counter (Cnt_Enable)
For further processing of the values in the ADbasic program, transfer the values into the
latch register and read them out there.

Please pay attention to the fact that the Cnt_Set instruction depends on the Cnt_Mode
instruction.

If you disable or enable a specified counter, then you also enable the running counters
(= set bits). If you do not set the bits of these counters (unintentionally), they will be dis-
abled.

Instruction Function
Cnt_Clear() * Clear counter

Cnt_Enable()
Disable or enable counter
(please note the already running counters)

Cnt_GetStatus(#) Read out status register (# = counter no. 1…4)
Cnt_ResetStatus() Clear status register of all counters.
Cnt_InputMode() Set CLR/LATCH input to CLR or LATCH mode
Cnt_Latch() * Latch counter values into Latch A
Cnt_Mode() Use external clock input or internal reference clock
Cnt_SE_Diff() Set clock inputs to differential or single-ended (as pairs)

Cnt_Set()
In combination with Cnt_Mode():
Set counter mode or length of the internal reference clock

Cnt_Read(#)
Read out counter values and transfer them to Latch A (# = counter no.
1…4)

Cnt_ReadLatch(#) Read out Latch A (triggered by positive edge), (# = counter no. 1…4)
Cnt_ReadFLatch(#) Read out Latch B (triggered by negative edge), (# = counter no. 1…4)
* These functions are reset after they have been executed. All other functions are reset by oppos-
ing functions.

12345678

9101112131415

V1
,2

IN
(-

)
V1

,2
IN

(-
)

V1
,2

IN
(-

)

V2
IN

(+
)

V1
IN

(+
)

V1
IN

(+
)

V1
,2

IN
(-

)
V1

,2
IN

(-
)

V1
,2

IN
(-

)
R

ES
ER

VE
D

V2
IN

(+
)

V1
IN

(+
)

V1
IN

(+
)

CO POWER IN
(female)

R
ES

ER
VE

D

ADwin-Gold USB / ENET, manual version 4.3, January 2012 25

CO1 Counter Add-OnADwin
8.2.1 Evaluation of the Counter Contents
The binary counters of the CO1 add-on generate 32-bit values, which are interpreted by
ADbasic as numerical values according to the model of the circle below: The most sig-
nificant bit (MSB) is interpreted as a sign, the highest positive number (231-1) follows the
highest negative number (-231) and the lowest positive number (0) follows the highest
negative number (-1).

Circle

Fig. 17 – Circle for the interpretation of counter values

Please pay attention to the following rules for programming:

1. Process the read 32-bit value only with variables of the type Integer or Long.
ADbasic then keeps internally the read bit pattern unmodified and automatically
considers the transition from the positive to the negative range of numbers. Then
you get:

Count direction2. The count direction (up or down) can reliably be derived from the
Sign of the difference: [new counter value] minus [old counter value]
and not from the comparison of the counter values.

"Overflow"For programming please remember that an "overflow" between the reading out of two
counts - i.e. the current counter value "laps" the last counter value which has been read
out - is not registered. Such a lap overflow occurs after some 3½ minutes with an input
frequency of 20 MHz or after more than 14 minutes with 5 MHz.

Example programsYou will find several example programs for the CO1 add-on in the directory
<C:\ADwin\ADbasic3\samples_ADwin_Gold> (standard installation).

8.3 Operating Mode Impulse/Event Counting
External square-wave signals at the inputs A/CLK and B/DIR clock the counters in this
mode. With Cnt_Set you either activate the mode for determining the clock frequency
and direction or the four edge evaluation.
The input CLR/LATCH (at high-signal) can be used to

Clear– clear the counter (CLR)

Latch– latch the counter values into latch register A (LATCH).

0000 0000h
FFFF FFFFh

7FFF FFFFh
8000 0000h

4
0
0
0

0
0
0
0
h

3
F
F
F

F
F
F
F
h

B
F
F
F

F
F
F
F
h

C
0
0
0

0
0
0
0
h

-1,073,741,824-1,073,741,825

1,073,741,823 1,073,741,824

2,147,483,647
-2,147,483,648

0
-1

ins ide :coun te r va lue
(binary)
outside:ADbasic value

CO1 Counter Add-On ADwin

26 ADwin-Gold USB / ENET, manual version 4.3, January 2012

8.3.1 Clock and Direction

Fig. 18 – Block diagram of the CO1 add-on in the mode
"clock and direction"

Every positive edge of a square-wave signal at the CLK input (clock) is counted (incre-
mented or decremented) up to a maximum frequency of 20 MHz. The direction is
derived from a high signal (count up) or low signal (count down) at the DIR input (direc-
tion); This signal can be static, for a fixed count direction, or dynamic, for changing
directions.

Programming example

8.3.2 Four Edge Evaluation
This mode determines clock and direction of two signals, which are phase-shifted by 90
degrees to the inputs A and B. The count direction is determined by the temporal
sequence of the rising and falling edges of the two input signals.

Control Registers

32 bit Counter

32 bit Latch A

CLK

EN
CLR

CLK

A
D

w
in

-G
O

LD
 b

us

Data

Data

DIR
CLR DIR

C
N

T_
C

LE
A

R

C
N

T_
E

N
A

B
LE

C
N

T_
LA

TC
H

4k7

4k7

4k7

initialization ...

disable counters

clear counter(s)

external clock input (CLK)

activate mode "clock and direction"

input CLR/LATCH as CLR input

enable counter(s)

select single-ended inputs

CNT_ENABLE(1)

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(0)

CNT_INPUTMODE(0)

CNT_SE_DIFF(0)

CNT_SET(1)

. . .

EVENT:

CNT_READLATCH(1)

. . .

CNT_LATCH(1) current counter value to latch A

read out latch A

evaluate counter value in process

event loop ...

ADwin-Gold USB / ENET, manual version 4.3, January 2012 27

CO1 Counter Add-OnADwin

Fig. 19 – Block diagram of the CO1 add-on in the mode
"four edge evaluation"

Please note:

– The counter counts 4 edges in one cycle of the A/B signal.

– The maximum count frequency is 20 MHz. Together with the 4 edges per cycle
it will result in a maximum input frequency of 5 MHz.

– The time between an edge at A and an edge at B must not be shorter than 50 ns.
Impulse widths or pause durations shorter than 100 ns are not incremented.

– Changing the phase-shift will have an effect on the maximum input frequency. If
it differs from 90 degrees, the maximum input frequency of 5 MHz decreases for
instance to 45 degrees at 2.5 MHz.

Programming example

8.4 Operating Mode Impulse Width and Period Width
Measurement

Reference clock generatorIn this operating mode an internal reference clock generator clocks the counter with a
signal frequency of 20 MHz or (after a prescaler) 5 MHz. All counters have a switch in
order to change the signal frequency. The period duration or pulse width of a square-
wave signal at input CLR/LATCH can be measured.

In this mode you have to consider at high frequencies that your Processdelay remains
smaller than a signal period, in order to acquire a cycle.

Control Registers

32 bit Counter

32 bit Latch A

CLK

EN
CLR

A

A
D

w
in

-G
O

LD
 b

us

Data

Data

B

CLR

DIR

4-edge
evaluation

DIR

C
N

T_
C

LE
A

R

C
N

T_
E

N
A

B
LE

C
N

T_
LA

TC
H

4k7

4k7

4k7

initialization ...

disable counters

clear counter(s)

external clock input (CLK)

activate mode "four edge evaluation"

input CLR/LATCH as CLR input

select single-ended inputs

CNT_ENABLE(1)

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(0)

CNT_INPUTMODE(0)

CNT_SE_DIFF(0)

CNT_SET(0)

. . .

enable counter(s)

EVENT:

CNT_READLATCH(1)

. . .

CNT_LATCH(1) current counter value to latch A

read out latch A

evaluate counter value in process

event loop ...

CO1 Counter Add-On ADwin

28 ADwin-Gold USB / ENET, manual version 4.3, January 2012

8.4.1 Period Duration Measurement
All four counters can execute period duration measurements.

Fig. 20 – Block diagram of the CO1 add-on in the mode
"period duration measurement"

In this mode, the counter values are latched into Latch A at every positive edge, and the
previous data are overwritten. The pulse width will be derived from the counter value dif-
ference multiplied by the period duration of the reference clock.

Programming example

8.4.2 Impulse Width and Pause Duration Measurements
All 4 counters measure impulse width and pause duration.

Control Registers

32 bit Counter

32 bit Latch A

CLK

EN
CLR

Data

Data

 LATCH

DIRUp

ref.-CLK

to fref switches of
other counters

Divider
÷ 4

fref
switch

G

20 MHz

C
N

T_
C

LE
A

R

C
N

T_
S

E
T

(C
N

T_
M

O
D

E-
Bi

t =
 1

)

C
N

T_
E

N
A

B
LE

4k7

A
D

w
in

-G
O

LD
 b

us

initialization ...

disable counters

clear counter(s)

mode "internal reference clock" with ...

... 20 MHz or

... 5 MHz reference frequency

input CLR/LATCH as LATCH input

enable counter(s)CNT_ENABLE(1)

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(1)

CNT_INPUTMODE(1)

CNT_SE_DIFF(0)

CNT_SET(0)

. . .

CNT_SET(1)

select single-ended inputs

EVENT:

CNT_READLATCH(1)

. . .

read out latch A

evaluate counter value in process

event loop ...

ADwin-Gold USB / ENET, manual version 4.3, January 2012 29

CO1 Counter Add-OnADwin

Fig. 21 – Block diagram of the CO1 add-on mode
"impulse width/pause duration"

The counters 1 and 2 have two latches for positive (Latch A) and negative edges (Latch
B). Thus, pulse and pause duration can be evaluated separately by calculating the dif-
ferences of the latches.

Programming example

8.4.3 Hardware addresses (CO1-add-on)
A process can be executed very quickly if you access directly the control and data reg-
ister (see chapter 5.3 and instructions Peek and Poke in the ADbasic manual).
The hardware addresses of the CO1 add-on can be found in the annex (compare to list
of instructions in chapter 8.2).

Control Registers

32 bit Latch B

32 bit Counter

32 bit Latch A

CLK

EN
CLR

A
D

w
in

-G
O

LD
 b

us

Data

Data

Data

 LATCH

DIRUp

ref.-CLK

to fref switches of
other counters

Divider
÷ 4

fref
switch

G

20 MHz

C
N

T_
C

LE
A

R

C
N

T_
S

E
T

(C
N

T_
M

O
D

E-
Bi

t =
 1

)

C
N

T_
E

N
A

B
LE

4k7

initialization ...

disable counters

clear counter(s)

mode "internal reference clock" with ...

... 20 MHz or

... 5 MHz reference frequency

input CLR/LATCH as LATCH input

enable counter(s)

select single-ended inputs

INIT:

CNT_ENABLE(0)

CNT_CLEAR(1)

CNT_MODE(1)

CNT_INPUTMODE(1)

CNT_ENABLE(1)

. . .

CNT_SET(0)

CNT_SET(1)

CNT_SE_DIFF(0)

EVENT:

CNT_READLATCH(1)

CNT_READFLATCH(1)

. . .

read out latch A

evaluate counter value in process

event loop ...

read out latch B

CAN add-on ADwin

30 ADwin-Gold USB / ENET, manual version 4.3, January 2012

9 CAN add-on
The add-on Gold-CAN is equipped with several additional interfaces that are configured
and operated individually:

– 4 SSI decoders (page 31)

The decoders can be used for the connection of incremental encoders with SSI
interface. All inputs are differential and designed for RS422/485 level (5V).

The decoder inputs are located on the connectors CO1...CO4, where the inputs
of the CO1 add-on can also be found.

– 2 CAN interfaces (page 33)

Depending on your requirements, you can order both interfaces either as high-
speed or low-speed version. Switching in operation is not possible.

The inputs of the CAN 1 interface are located on the connectors CAN 1.1 and
CAN 1.2, those of the CAN 2 interface on the connector CAN 2.

– 2 RSxxx interfaces (page 35)

Both interfaces can be configured separately per software to be operated as
RS232 or RS485.

The interface inputs are located on the connectors COM1 and COM2.
The add-on Gold-CAN is only available in combination with the Gold-D option.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 31

CAN add-onADwin
9.1 SSI Decoder
An incremental encoder with SSI interface can be connected to the decoders. The sig-
nals are differential and have RS422/485 levels.
The decoders either read out an individual value (on request) or they continously provide
the current value.
The connections of the 4 decoders are on the connectors CO1...CO4 (15-pin, DSUB),
on the pins 5, 8, 14 and 15 (see fig. 22). If the device is equipped with the CO1 add-on
the remaining pins are reserved for the counter connections.

Fig. 22 – Pin assignment SSI decoder

A voltage input to the connection CO Power in is supplied at the connectors CO1...CO4,
for example for an external incremental encoder.
Please note: The negative inputs U1in (-) are galvanically connected with GND via a
common line, the negative inputs U2in (-) have such a connection, too.

Setting the propertiesThe following properties of the decoders can be set via software:

– Clock rates: With SSI_SET_CLOCK clock rates of approx. 40kHz up to 1MHz are
possible with a pre-scaler.

– Resolution: Can be set with SSI_SET_BITS up to 32 bit.

8

7

6

5

4

3

2

1

15

14

13

12

11

10

9

SSI, CLK (-)
SSI, CLK (+)
RESERVED
CLR/LATCH (-)
V2OUT(-)
CLR/LATCH (+)
V2OUT(+)

SSI, DATA (-)
B/DIR (-)
B/DIR (+)

SSI, DATA (+)
A/CLK/PWM (-)
A/CLK/PWM (+)

V1OUT(-)
V1OUT(+)

CO1, ... , CO4 (male)

12345678

9101112131415

V1
,2

IN
(-

)
V1

,2
IN

(-
)

V1
,2

IN
(-

)

V2
IN

(+
)

V1
IN

(+
)

V1
IN

(+
)

V1
,2

IN
(-

)
V1

,2
IN

(-
)

V1
,2

IN
(-

)
R

ES
ER

VE
D

V2
IN

(+
)

V1
IN

(+
)

V1
IN

(+
)

CO POWER IN
(female)

R
ES

ER
VE

D

CAN add-on ADwin

32 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Example:
Conversion of
Gray code

A conversion from Gray code into binary code is made with the routine below, which you
have programmed in the ADbasic process.

REM PAR_1 = Gray value to be converted
REM PAR_2 = Flag indicating a new Gray value
REM PAR_9 = Result of the Gray-to-binary conversion

DIM m, n AS LONG

EVENT:
IF(PAR_2=1) THEN 'Start of conversion
m=0 'initialize value
PAR_9=0 ' -"-
FOR n=1 TO 32 'Go through all possible 32 bits
 m=(SHIFT_RIGHT(PAR_1,(32-n)) AND 1) XOR m
 PAR_9=(SHIFT_LEFT(m,(32-n))) OR PAR_9
NEXT n

PAR_2=0 'Enable next conversion
ENDIF

Fig. 23 – Listing: Conversion of Gray code into binary code

Programming The functionality of the decoders is easily programmed with ADbasic instructions:

The instructions are in the include file <ADWGCAN.INC>. More information can be found
in the ADbasic manual and the online help.

Range Instructions
Initialization SSI_Mode

SSI_Set_Bits
SSI_Set_Clock

Receiving of data SSI_Read
SSI_Start
SSI_Status

ADwin-Gold USB / ENET, manual version 4.3, January 2012 33

CAN add-onADwin
9.2 CAN Interface
The CAN interfaces 1 and 2 can be operated individually. Depending on your require-
ments, you can order both interfaces either as high-speed or low-speed version. Switch-
ing in operation is not possible.

9.2.1 Hardware Description
The connections of the interfaces 1 and 2 are located on the 9-pin DSUB connector:

– Interface 1: Connector (male) CAN 1.1 and connector (female) CAN 1.2. The
pins of the connectors are internally connected with each other.

– Interface 2: Connector CAN 2.

The pinouts for CAN "High speed" and "Low speed" are different.

Fig. 24 – CAN: Pin assignments

Both interfaces have their individual CAN-GND potential; the potentials are both galvan-
ically isolated from each other as well as from the mass potential (GND) of the enclosure.

Power supply
(Low speed only)

The low speed version requires an external power supply of 12V DC to run the CAN con-
troller. The power must be supplied for each interface separately.

Bus Termination
(High speed only)

If the CAN interface functions as the physical termination of a high-speed CAN bus, it
must be terminated with a 120Ω resistor (only the first or the last CAN node). CAN
nodes, which are not positioned in an end-location, must not be terminated.
If termination is required for one (or both) interfaces, the pins CAN(+) and CAN(-) must
be connected by a resistor of 120Ω.

9.2.2 Description of the CAN interface
The CAN bus interface is equipped with the Intel® CAN controller AN82527 which works
according to the specification CAN 2.0 parts A and B as well as to ISO 11898. You pro-
gram the interface with ADbasic instructions, which are directly accessing the control-
ler’s registers.

MessageMessages sent via CAN bus are data telegrams with up to 8 bytes, which are charac-
terized by so-called identifiers. The CAN controller supports identifiers with a length of

CAN Bus Male connectors
CAN 1.1, CAN 2

Female connector
CAN 1.2

High
speed

Low
speed

CAN 1.1 & CAN 2
(male)

R
E

S
E

R
V

E
D

R
E

S
E

R
V

E
D

R
E

S
E

R
V

E
D

C
A

N
(-)

C
A

N
-G

N
D

C
A

N
-G

N
D

C
A

N
(+

)

54321

9876

CAN 1.2
(female)

C
A

N
-G

N
D

C
A

N
(-)

R
E

S
E

R
V

E
D

C
A

N
(+

)
C

A
N

-G
N

D

R
E

S
E

R
V

E
D

R
E

S
E

R
V

E
D

12345

6789

re
se

rv
ie

rt

re
se

rv
ie

rt
C

A
N

(-)
C

A
N

-G
N

D

C
A

N
-G

N
D

C
A

N
(+

)
re

se
rv

ie
rt

12
V

(E
in

ga
ng

)

54321

9876

C
A

N
-G

N
D

C
A

N
(-)

re
se

rv
ie

rt

12
V

(E
in

ga
ng

)
re

se
rv

ie
rt

C
A

N
(+

)
C

A
N

-G
N

D

re
se

rv
ie

rt

12345

6789

CAN add-on ADwin

34 ADwin-Gold USB / ENET, manual version 4.3, January 2012

11 bit and 29 bit. The communication, that means the management of bus messages,
is effected by 15 message objects.

The registers are used for configuration and status display of the CAN controller. Here
the bus speed and interrupt handling, etc. are set (see separate documentation "82527
- Serial Communications Controller, Architectural Overview" by Intel®)
The CAN bus can be set to frequencies of up to 1 MHz and is usually operated with
1MHz; with low speed CAN the max. frequency is 125kHz. The CAN bus is galvanically
isolated by optocouplers from the ADwin system.
An arriving message can trigger an interrupt which instantaneously generates an event
at the processor. Therefore an immediate processing of messages is guaranteed.

Message Management

Identifier The CAN controller identifies messages by an identifier; these are parameters in a
defined bit length. The parameters 0...211-1 or 0...229-1 result from the bit length.

Message objects The controller stores each message (incoming or outgoing) in one out of 15 message
objects. The message objects can either be configured to send or to receive messages.
Message object 15 can only be used to receive messages.
After initializing the CAN controller all message objects are not configured.
Each message object has an identifier, which enables the user to assign a message to
a message object.

Transferring messages In ADbasic a message is transferred to a message object using the array can_msg[],
which can receive 8 data bytes plus the amount of data bytes (9 elements). When read-
ing a message from the message object it can also be transferred to the array can_
msg[].

Sending messages Sending a message is made as follows:

– You configure a message object to send and define the identifier of the object
(instruction EN_TRANSMIT).

– Save the message in can_msg[].

– Send the message (instruction TRANSMIT). The message in the array can_
msg[] is transferred to the message object. As soon as the bus is ready, the
message is sent (with the identifier of the message object).

Receiving messages Receiving a message is made as follows:

– You configure a message object to receive and define the identifier of the object
(instruction EN_RECEIVE).

– The controller monitors the CAN bus if there are incoming messages and saves
messages with the right identifier in the message object.

– Transfer the message from the message object into the array can_msg[]
(instruction READ_MSG) and read out the corresponding identifier.

An arriving message overwrites the old data in the message object, which will be defi-
nitely lost. Therefore pay attention to reading out the data faster than you are receiving
them. A data loss is indicated by a flag.
The message object 15 has an additional buffer, so that 2 messages can be stored
there.

Assigning messages The allocation of an arriving message to a message object is automatically controlled
by comparing its identifiers. The global mask (CAN registers 6...7 or 6...9) controls this
comparison as follows:

– The identifier of the message is bit by bit compared to the identifier of the mes-
sage object. If the relevant bits are identical, the message is transferred to the
message object. Not relevant bits are not compared to each other, that is, the
message is transferred to the object (if it depends on this bit).

– Relevant bits are set in the global mask.

Global mask With the global mask a message object is used for receiving messages with different
identifiers (ID). The following example shows the assignment of the message IDs 1...4
to the message object IDs 1...4, when all bits of the global mask are set, except the two
least-significant bits (if you have an 11-bit identifier it is 11111111100b).

ADwin-Gold USB / ENET, manual version 4.3, January 2012 35

CAN add-onADwin

In this example the comparison of bit 2 is responsible for the assignment of the mes-
sages, because the bits 3...10 of the compared identifiers are identical (= 0) and the bits
0 and 1 are not compared, because they are set to zero in the global mask (= not rele-
vant).

Setting the bus frequency
The CAN bus frequency depends on the configuration of the controller.
The initialization with INIT_CAN configures the controller automatically to a CAN bus
frequency of 1 MHz. If the CAN bus is to operate with a different frequency, just use the
instruction SET_CAN_BAUDRATE.
With low speed CAN the maximum bus frequency is 125kBit/s.

Bus frequency for
special cases

In some special cases it may be better to select configurations other than those set with
SET_CAN_BAUDRATE. For this purpose specified registers have to be set with the
instruction Poke. The structure of the register is described in the controller documenta-
tion.

Enable Interrupt / Trigger Event
A message object can be enabled to trigger an interrupt when a message arrives. The
interrupt output of the CAN controller is connected to the event input of the processor.
The processor reacts immediately to incoming messages without having to control the
message input (polling).
You can enable the interrupts of several message objects. Which object has caused the
interrupt can be seen in the interrupt register (5Fh): It contains the number of the mes-
sage object that caused the interrupt. If the interrupt flag (new message flag) is reset in
the message object, the interrupt register will be updated. If there is no interrupt the reg-
ister is set to 0. If another interrupt occurs during working with the first interrupt its source
will be shown in the interrupt register. An additional interrupt does not occur in this case.

Programming
The interface is easily programmed using ADbasic instructions:

The instructions are in the include file <ADWGCAN.INC>. More information can also be
found in the ADbasic manual and the online help.

9.3 RSxxx Interfaces
Each of the 2 RSxxx interfaces is equipped with the "Quad Universal Asynchronous
Receiver/Transmitter" controller (UART), type TL16C754 from Texas Instruments®.
Functionality and programming of the interfaces are based on this controller.

Message ID ID of the message object

1
…001b

2
…010b

3
…011b

4
…100b

1 (…001b) x x x 0

2 (…010b) x x x 0

3 (…011b) x x x 0

4 (…100b) 0 0 0 x
x: Message is admitted
0: Message is not admitted

Range Instructions
Initialization Init_CAN

En_CAN_Interrupt
Set_CAN_Baudrate

Receiving and sending of data CAN_Msg
En_Receive, En_Transmit
Read_Msg , Read_Msg_Con ,
Transmit

Write / read access to the
controller register

Set_CAN_Reg
Get_CAN_Reg

CAN add-on ADwin

36 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Both interfaces can be operated individually with the RS232 or RS485 protocol. The
physical difference between the protocols is the level of the signals, which are gener-
ated by special driver components on the bus.

Pin assignment

Bus termination
(RS485 only)

If an RS485 interface functions as the physical bus termination, the terminator must be
a resistor (only the first or last RS485 participant). RS485 participants, which are not
positioned in an end-location, must not be terminated.
For the termination there is–if required for the chosen circuit type–a voltage of +5V pro-
vided at pin 6. For bus termination please note, that the voltage line is equipped with a
330Ω resistor.

9.3.1 Setting the interface parameters
Each interface has an input and an output FIFO with a length of 64 bytes each.
The settings of the interface parameters are made separately for each channel, using
the controller register. Below the settings are described more detailed:

Handshake – Handshake: The interface is operated in 4 modes:

1. RS232 without handshake

2. RS232 with software handshake (Xon/Xoff)

3. RS232 hardware handshake (RTS/CTS). The signals RTS and CTS must be
connected.

4. RS485

Parity – Parity: In order to recognize an error or incorrect data during the transfer, a parity
bit can be transferred at the same time. The parity can be even or odd or you can
have no parity bit at all.

Data bits – Data bits: the active data to be transferred may be 5...8 bits long.

Stop bits – Stop bits: The number of stop bits can be set to 1, 1½ or 2. Here the number of
stop bits depends on the number of data bits:

• 5 data bits: 1 or 1½ stop bits.
• 6…8 data bits: 1 or 2 stop bits.

Baud rate – Baud rate: The physical data are between 35 Baud and 2.304MBaud; when
using an RS-232 interface the maximum Baud rate is 115.2 kBaud.

The Baud Rates are derived by the clock rate of the module; the basic clock rate
has a frequency of 2.304MHz. Based on this fact, every Baud rate is possible
that can be derived by an integer division of the basic frequency. The divisor can
have values between 1...0FFFFh. The following table shows some common
Baud rates and their divisors:

COM1, COM2
(RS232) (male)

54321

9876

RE
S

ER
VE

D
Rx

D
Tx

D
RE

S
ER

VE
D

SG
N

D

+5
V

RT
S

CT
S

R
ES

ER
VE

D

SH
IG

H
RE

S
ER

VE
D

SG
N

D

+5
V

R
ES

ER
VE

D
SL

O
W

R
ES

ER
VE

D

54321

9876

RE
S

ER
VE

D

COM1, COM2
(RS485) (male)

ADwin-Gold USB / ENET, manual version 4.3, January 2012 37

CAN add-onADwin

Fig. 25 – RS-xxx: Baud rates

Special features of RS485Via a RS485 interface more than 2 participants can communicate with each other. (Con-
trary to the RS232 interface). With RS485 interfaces a bus can be set up.
Consider the following:

– There is no handshake, because a handshake is only possible between
2 participants.

– The interface must know if it should write to the bus or get data from the bus
(RS485_SEND).

9.3.2 Programming
Functionality and programming of the interface depend on this controller. The controller
is easily programmed with ADbasic instructions:

The instructions are in the include file <ADWGCAN.INC>. More information can also be
found in the ADbasic manual and the online help.

Baud rate Divisor Baud rate Divisor

dez. hex. dez. hex.

2304000 1 0001h 19200 120 0078h

1152000 2 0002h 9600 240 00F0h

460800 5 0005h 4800 480 01E0h

230400 10 000Ah 2400 960 03C0h

115200 20 0014h 1200 1920 0780h

57600 40 0028h 600 3840 0F00h

38400 60 003Ch 300 7680 1E00h

Range Instructions
Initialization RS_Init, RS_Reset

Receiving and transmitting of data RS485_Send, Read_FIFO,
Write_FIFO

Write and read access
to the controller register

Get_RS, Set_RS

CAN add-on ADwin

38 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Example programs

RS232 The following program illustrates the initialization of the serial RS232 interface in the
INIT: section and the cyclic reading and writing of data in the EVENT:. section. The
process is timer-controlled:
REM The program initializes the serial interface
REM in the Init: section.
REM In the Event: section data is exchanged between
REM the interfaces 1 & 2 of the RS module.
REM The interfaces are tested with this program.
REM For this connect the interfaces with each other
REM befor starting the program.

#INCLUDE adwpext.inc
DIM DATA_1[1000] AS LONG'Transmitted data
DIM DATA_2[1000] AS LONG'Received data
DIM lauf AS LONG 'Control variable

INIT:
FOR run = 1 TO 1000 'Initialization of the transmit-

'ted data
DATA_1[run] = run AND 0FFh

NEXT run
REM Initialization of the interfaces:
REM 9600 Baud, not parity bit, 8 data bits,
REM 2 stop bits, RS232 witout handshake
RS_INIT(19600.0.8,1,0)
RS_INIT(2,9600,0,8,1,0)
PAR_1 = 1
PAR_4 = 1

EVENT:
REM Read and write a data set
IF (PAR_1 <= 1000) THEN'Send data
PAR_2 = WRITE_FIFO(1,DATA_1[PAR_1])
IF (PAR_2 = 0) THEN INC PAR_1

ENDIF

PAR_3 = READ_FIFO(2) 'Read data
If (PAR_3 <> -1) THEN
DATA_2[PAR_4] = PAR_3
INC PAR_4

ENDIF
IF (PAR_4 > 1000) THEN END'All data are transmitted

ADwin-Gold USB / ENET, manual version 4.3, January 2012 39

CAN add-onADwin
RS485In this example the RS485 interface is a passive participant, which reads data coming

from the input. If a specified value (55) is received, the interface starts to send. It sends
continuously the value 44.

REM Interface 2 reads all data coming from the bus
REM until it receives the value 55. Now the interface
REM becomes active and sends the value 44.

#include adwgcan.inc
dim ret_val, val as Long

init:
rs_reset()
REM Initialization of the interfaces:
REM 38400 Baud, no parity bit, 8 data bits,
REM 1 stop bit, RS485 software handshake
rs_init(1,38400,0,8,0,3)
rs_init(2,38400,0,8,0,3)
rs485_send(1,1) 'Send interface 1
rs485_send(2,0) 'Receive interface 2

event:
val = read_fifo(2) 'Read data from interface 2

if (val = 55) then
 rs485_send(2,1) 'Send interface 2
 ret_val = write_fifo(2,44) 'Write data
endif

CAN add-on ADwin

40 ADwin-Gold USB / ENET, manual version 4.3, January 2012

ADwin-Gold USB / ENET, manual version 4.3, January 2012 41

ADwin-Gold-BootADwin
10ADwin-Gold-Boot
This option is only available in an ADwin-Gold-ENET.
ADwin-Gold-Boot starts a previously programmed application automatically after
power-up. After installation of this application an operation without computer is possible.
With ADwin-Gold-Boot the following steps are executed after power-up:

– Loading the operating system

– Loading of the compiled processes, compiled by ADbasic (max. 10).

– Automatic starting of the process no. 10. Here you have also to program the start
of all other processes.

Disable boot loaderIf you do not wish to work with the boot loader option:

– Boot the system after power-up and the previously saved processes are dis-
abled.

– After switching off and powering up anew, the boot loader option is enabled
again.

By programming the Flash-EEPROM without processes and only with the file
<ADwin9.btl> the system will only be booted after power-up, but no processes can be
executed.
With the installation of the ADwin Developer-Software from the supplied ADwin CD-
ROM, the utility program for the boot loader (ADethflash) is automatically copied. You
should have a CDROM version 3.00.2735 or a later version.
Use the program <ADethflash.exe> for an ADwin-Gold system with Ethernet inter-
face.
At standard installation you will find the program in the directory

<C:\ADwin\Tools\Ethernet Interface\…>.

Help for Ethernet interfaceYou will find information about the boot loader with Ethernet interface in the ADwin
Driver Installation manual.

2000 values you can freely
dispose of

In combination with the Ethernet interface and boot loader you can write or read out 2000
long or float values à 32-bit via ADbasic processes into/from the Flash- EEPROM. A
more detailed description can be found in the program <ADethflash.exe> by clicking
on "Info about eeprom support".

Accessories ADwin

42 ADwin-Gold USB / ENET, manual version 4.3, January 2012

11 Accessories
The following accessories are available for the ADwin-Gold:

– ADwin-Gold-pow: external 12V power supply unit (necessary for notebook
operation).

On the secondary side ADwin-Gold-pow provides 12 Volt at a maximum load
of 2 Ampere. The power supply unit is rated for the highest load and maximum
expansions of the ADwin-Gold.

Please pay attention to the fact that the USB, Ethernet cables are sufficiently
shielded, in order to avoid interferences in the data lines. Interferences have to
be passed before entering the chassis via GND (ground). (See also chapter 3
"Operating Environment").

– various lengths of power supply and USB or Ethernet cable

– Gold-Mount: kit for installation of the ADwin-Gold system on a DIN rail.

– cable connector for an external power supply

ADwin-Gold USB / ENET, manual version 4.3, January 2012 43

SoftwareADwin
12Software
You are programming ADwin-Gold - all add-ons included - with simple ADbasic instruc-
tions. Basic instructions are described in the ADbasic manual.
Instructions for access of inputs / outputs and interfaces be found on following pages:

– page 44ff: Analog Inputs / Ouputs

– page 56ff: Digital Inputs / Ouputs

– page 65ff: Counters

– page 83ff: CAN interface

– page 98ff: RSxxx interface

– page 108ff: SSI interface

Analog Inputs and Outputs ADwin

44 ADwin-Gold USB / ENET, manual version 4.3, January 2012

12.1 Analog Inputs and Outputs
This section describes the following instructions:

– DAC (page 45)

– ADC (page 46)

– ADC12 (page 48)

– ReadADC (page 50)

– ReadADC12 (page 51)

– Set_Mux (page 52)

– Start_Conv (page 54)

– Wait_EOC (page 55)

ADwin-Gold USB / ENET, manual version 4.3, January 2012 45

Analog Inputs and Outputs
DACADwin

DACDAC outputs a defined voltage on a specified analog output.

Syntax
DAC(dac_no,value)

Parameters

Notes
If you specify value beyond the permissible value range, it will auto-
matically be set to the system-specific minimum or maximum value.

See also
ADC

Valid for
Gold, Gold-DA

Example
REM Digital proportional controller
Dim set_to, gain, diff, Out As Long 'Declaration

Event:
set_to = Par_1 'Setpoint
gain = Par_2 'Dimension
diff = set_to - ADC(1)'Calculate control deviation
Out = diff * gain 'Calculate actuating value
DAC(1, Out) 'Output of the actuating value

dac_no Number of the analog output (1…8). LONG

val Value in digits, which defines the voltage to be
output (0…65535).

LONG

Analog Inputs and Outputs
ADC ADwin

46 ADwin-Gold USB / ENET, manual version 4.3, January 2012

ADC ADC measures the voltage of an analog input and returns the corresponding
digital value.
If specified, the return value is multiplied by a gain factor.
For the 12-/14-bit converter use the instruction ADC12.

Syntax
ret_val = ADC(channel{,gain})

Parameters

Notes
ADC is a combination of consecutive functions:

• Set_Mux: Set the multiplexer to the specified input channel.
• Wait for settling of the multiplexer.
• Start_Conv: Start measurement: Convert analog signal-

considering the gain factor-to a digital value.
• Wait_EOC: Wait for the end of conversion.
• ReadADC: Read out digital value from the register and return it.

Multiplexer settling time and conversion time are given on page 14.

If you indicate a non-existing input channel the measurement result will
be undefined.

The execution time for the instruction depends on the system you use.
You will find Information about the multiplexer settling time and the con-
version time in the hardware documentation of your system.

If you set the process cycle time (Processdelay) to a value less than
20 µs, the execution time of the instruction is only half as long. This is
possible, because the compiler skips the waiting time for the settling of
the multiplexer. It is assumed that you want to execute a measurement
without setting the multiplexer.
If (at such short cycle times) you require the first measurement to be cor-
rect, you have to set the multiplexer to the specified input channel prior
to using the instruction ADC with Set_Mux for the first time. This time
has to be at least as long as the multiplexer settling time.

In the following examples the instructions Set_Mux, Start_Conv,
Wait_EOC and ReadADC should be used instead of ADC in the following
cases:

• Very short cycle times: Processdelay < 240 (s.a.).
• High internal resistance (>3kΩ) of the voltage source of the

measurement signal: This increases the settling time of multiplexer.
• You want to use inevitable waiting times for additional program tasks.

The measurement range depends on the gain factor:

channel Number (1…16) of the analog input channel. LONG

gain Optional: gain factor (1, 2, 4, 8). LONG

CONST

ret_val Measurement value in digits (0…65535). LONG

Gain factor Input voltage
range

Measure-
ment range

1 -10V … 10V 20V
2 -5V … 5V 10V
4 -2.5V … 2.5V 5V
8 -1.25V … 1.25V 2.5V

ADwin-Gold USB / ENET, manual version 4.3, January 2012 47

Analog Inputs and Outputs
ADCADwin

With the following formula you can calculate the measured voltage from
the returned digital value.

The following values, shown in the table below, apply in case you have
chosen a gain of 1 (measurement range of 20 Volt):

See also
ADC12, ReadADC, Set_Mux, Start_Conv,Wait_EOC, DAC

Valid for
Gold

Example
Dim iw As Long 'Declaration

Event:
'Measure analog input 1 with gain of 4
iw = ADC(1,4)
'Write measurement value into global variable, so
'that the computer can read it
Par_1 = iw

Measurement
range

Return value of ADC 1 Digit
is0 32768 65535

20V -10V 0V +9.999695
V 305.175µV

Voltage Digits 32768bipolar–() measurement range
65536

--⋅=

Analog Inputs and Outputs
ADC12 ADwin

48 ADwin-Gold USB / ENET, manual version 4.3, January 2012

ADC12 ADC12 measures the voltage of an analog input via 12-bit (rev. A) or 14-bit con-
verter (rev. B).
The measurement value is returned in digits, multiplied by a gain factor if spec-
ified.
For the 16-bit converter use the instruction ADC.

Syntax
ret_val = ADC12(channel{,gain})

Parameters

Notes
ADC12 is a combination of consecutive functions:

• Set_Mux: Set the multiplexer to the specified input channel.
• Wait for settling of the multiplexer.
• Start_Conv: Start measurement: Convert analog signal-

considering the gain factor-to a digital value. If specified, the digital
value is multiplied by a gain factor.

• Wait_EOC: Wait for the end of conversion.
• ReadADC12: Read out digital value from the register and return it.

Multiplexer settling time and conversion time are given on page 14.

If you indicate a non-existing input channel the measurement result will
be undefined.

The execution time for the instruction depends on the system you use.
You will find Information about the multiplexer settling time and the con-
version time in the hardware documentation of your system.

The steps of 16 and 4 of the returned measurement values result from
the fact that the 12-bit and 14-bit conversion results are returned each
as a 16-bit value: The bits 0 to 3 are always 0 (zero) with 12-bit convert-
ers and bits 0 and 1 with 14-bit converters.

In the following examples you should use the instructions Set_Mux,
Start_Conv, Wait_EOC and ReadADC12 instead of ADC in the follo-
wing cases:

• Very short cycle times: Processdelay < 200: ADC12 cannot be
executed during the cycle time.

• High internal resistance (>3k Ω) of the voltage source of the
measurement signal: This increases the settling time of multiplexer.

• You want to use inevitable waiting times for additional program tasks.

The measurement range depends on the gain factor.

channel Number (1…16) of the analog input channel. LONG

gain Optional: gain factor(1, 2, 4, 8). LONG

CONST

ret_val Measurement result in digits:
12-bit: 0, 16, 32, …, 65520
14-bit: 0, 4, 8, …, 65532.

LONG

Gain Input voltage
range

Meas. range

1 -10 V … 10 V 20V
2 -5 V … 5 V 10V
4 -2.5 V … 2.5 V 5V
8 -1.25 V … 1.25 V 2.5V

ADwin-Gold USB / ENET, manual version 4.3, January 2012 49

Analog Inputs and Outputs
ADC12ADwin

With the following formula you can calculate the measured voltage from
the returned digital value:

The following values, shown in the table below, apply in case you have
chosen a gain of 1 (measurement range of 20 Volt):

See also
ADC, ReadADC12, Set_Mux, Start_Conv,Wait_EOC

Valid for
Gold

Example
Dim iw As Long 'Declaration

Event:
'Measure analog input 1 with a gain of 4
iw = ADC12(1,4)
'Write measurement value into global variable so that
'the computer can read it.
Par_1 = iw

Measurement
range

Return value of ADC12 1 Digit
is0 32768 65535

20V -10V 0V +9.99512V 4.88mV

Voltage Digits 32768bipolar–() measurement range
65536

--⋅=

Analog Inputs and Outputs
ReadADC ADwin

50 ADwin-Gold USB / ENET, manual version 4.3, January 2012

ReadADC READADC returns a converted value from a 16-bit A/D-converter.

Syntax
ret_val = ReadADC(adc_no)

Parameters

Notes
ReadADC12 reads the converted values of the 12-bit or 14-bit A/D con-
verter.

See also
ADC, ReadADC12, Set_Mux, Start_Conv,Wait_EOC

Valid for
Gold

Example
Event:
'Set multiplexer: ADC1 to channel 3, ADC2
'to channel 4 (without gain)
Set_Mux(1001b)
Rem wait for MUX settling time
Rem …
Start_Conv(11b) 'Start conversion for both ADCs
Wait_EOC(11b) 'Wait for end of conversion
Par_1 = ReadADC(1) 'Read value of ADC1
Par_2 = ReadADC(2) 'Read value of ADC2

adc_no Number (1, 2) of the 16-bit converter to read. LONG

ret_val Measurement value in digits which corresponds to
the voltage at the converter’s input.

LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 51

Analog Inputs and Outputs
ReadADC12ADwin

ReadADC12READADC12 returns a converted value from one of the two 12-bit/14-bit A/D
converters.

Syntax
ret_val = ReadADC12(adc_no)

Parameters

Notes
ReadADC reads the converted value of the 16-bit A/D converter.

The A/D converters (ADC) divide the measurement range of 20 Volts
into equal steps (digits), these are 4096 digits with 12-bit ADC and
16384 with 14-bit ADC.

In order to make comparing these values to the measurement values of
the 16-bit ADC’s easier, the instruction ReadADC12 returns the result
"left-aligned" descending from bit 15; the bits 3…0 (12-bit ADC) or 1…0
(14-bit ADC) have always the value 0.
Therefore using the instructions ReadADC and ReadADC12 to measure
the same voltage always return the same result in bits 31…4 or 31…2.

See also
ADC12, Set_Mux, Start_Conv,Wait_EOC

Valid for
Gold

Example
Dim val1, val2 As Long

Event:
'Set multiplexer: ADC12-1 to channel 3, ADC12-2
'to channel 4 (without gain)
Set_Mux(1001b)
Rem wait for MUX settling time
Rem …
Start_Conv(11000b) 'Start conversion for both ADCs
Wait_EOC(11000b) 'Wait for end of conversion
val1 = ReadADC12(1) 'Read value of ADC12-1
val2 = ReadADC12(2) 'Read value of ADC12-2

adc_no Number (1, 2) of the 12-bit converter
to read.

LONG

ret_val Measurement value in digits, which corresponds
to the voltage at the converter’s input.

LONG

Analog Inputs and Outputs
Set_Mux ADwin

52 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Set_Mux SET_MUX sets one or more A/D input multiplexers and the corresponding gain
for the specified measurement channel.

Syntax
Set_Mux(pattern)

Parameters

Notes
Please consider that when setting the multiplexer to another channel a
specified settling time is required. You should only start the conversion
after this settling time has elapsed.

Multiplexer settling time and conversion time are given on page 14.

It is preferable to use a binary code (suffix "b") for the bit pattern. This
will make it easier to display the bit pattern than if you use a decimal or
hexadecimal representation although it is still possible to use these.

See also
ADC, ADC12, ReadADC, ReadADC12, Start_Conv,Wait_EOC

Valid for
Gold

Example
To set the multiplexer of ADC1 to channel 5 and to gain 8 and at the
same time the multiplexer of ADC2 to channel 10 and gain 2, you need
the bit pattern: 0111100010b (decimal: 482).

pattern Bit pattern for the allocation of measurement
channels and gain.

LONG

Bit
no
.

9 8 7 6 5 4 3 2 1 0

PGA 2 PGA 1 MUX 2 MUX 1

PGA 1 / 2 2 bits (6…7 / 8…9) each determine the gain factor
of the multiplexer:

2 Bits
00:
01:
10:
11:

PGA 1 / PGA 2
Factor 1
Factor 2
Factor 4
Factor 8

MUX 1 / 2 3 bits each (0…2 / 3…5) determine the channel to
which the multiplexer is set:

3 bits
000:
001:
010:
011:
100:
101:
110:
111:

MUX 2
channel 2
channel 4
channel 6
channel 8
channel 10
channel 12
channel 14
channel 16

MUX 1
channel 1
channel 3
channel 5
channel 7
channel 9
channel 11
channel 13
channel 15

ADwin-Gold USB / ENET, manual version 4.3, January 2012 53

Analog Inputs and Outputs
Set_MuxADwin

Dim val As Long

Event:
Set_Mux(0111100010b)'Set multiplexer (s.a.)
'Wait here for the settling time of the multiplexer
'by inserting some instructions.
Start_Conv(1) 'Start AD-conversion ADC1
Wait_EOC(1) 'Wait for end of conversion of

ADC1
val = ReadADC(1) 'Read value of ADC1

Analog Inputs and Outputs
Start_Conv ADwin

54 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Start_Conv START_CONV can start the conversion of one or more A/D converters as well
as of all the D/A converters.

Syntax
Start_Conv(pattern)

Parameters

Notes
ADC1 and ADC2 can either be 12-bit, 14-bit or 16-bit analog-to-digital
converters. For more information see page 10.

You can only use constants as parameters, variables are not allowed.

It is preferable to use a binary code (suffix "b") for the bit pattern. This
will make it easier to display the bit pattern than if you use a decimal or
hexadecimal representation although it is still possible to use these.

See also
ADC, ADC12, ReadADC, ReadADC12, Set_Mux,Wait_EOC

Valid for
Gold

Example
Dim val1 As Long

Event:
Set_Mux(0) 'Set multiplexer to channel 1
'Bypass the settling time with command lines
Start_Conv(1) 'Start ADC1 A/D-conversion
Wait_EOC(1) 'Wait for end of conversion
val1 = ReadADC(1) 'Read out value

Multiplexer settling time see page 14.

pattern Bit pattern that specifies which converters should
be started (only bits 0…4 can be used):
1: start conversion.
0: do not start conversion.

CONST

LONG

Bit no. 31…5 4 3 2 1 0
ADC1, 16-bit – – – – – x
ADC2, 16-bit – – – – x –
all DACs – – – x – –
ADC1, 12-bit
ADC1, 14-bit

– – x – – –

ADC2, 12-bit
ADC2, 14-bit

– x – – – –

ADwin-Gold USB / ENET, manual version 4.3, January 2012 55

Analog Inputs and Outputs
Wait_EOCADwin

Wait_EOCWAIT_EOC waits for the end of the conversion cycle of a specified A/D-con-
verter.

Syntax
Wait_EOC(pattern)

Parameters

Notes
If you set more than one of the bits, you have to wait for the conversion
to finished for all of the relevant ADCs.

Always select the bits of existing ADCs. Otherwise the communication
in a high-priority process between ADwin system and computer will be
interrupted.

See also
ADC, ADC12, ReadADC, ReadADC12, Set_Mux, Start_Conv

Valid for
Gold

Example
Dim val As Long

Event:
Set_Mux(001000b) 'Set MUX of ADC2 to channel 4
'Bypass the settling time of the multiplexer with
'command lines
Start_Conv(2) 'Start A/D-conversion ADC2
Wait_EOC(2) 'Wait for end of conversion at

'ADC2
val = ReadADC(2) 'Read out value

Multiplexer settling time see page 14.

pattern Bit pattern that specifies which converters are to
be waited for (only bits 0…4 can be used).

CONST

LONG

Bit no. 31…
5

4 3 2 1 0

ADC1, 16-bit – – – – – x
ADC2, 16-bit – – – – x –
ADC1, 12/14-
bit

– – x – – –

ADC2, 12/14-
bit

– x – – – –

Digital Inputs and Outputs ADwin

56 ADwin-Gold USB / ENET, manual version 4.3, January 2012

12.2 Digital Inputs and Outputs
This section describes the following instructions:

– Clear_Digout (page 57)

– Conf_DIO (page 58)

– Digin (page 59)

– Digin_Word (page 60)

– Digout_Word (page 61)

– Set_Digout (page 63)

ADwin-Gold USB / ENET, manual version 4.3, January 2012 57

Digital Inputs and Outputs
Clear_DigoutADwin

Clear_DigoutCLEAR_DIGOUT sets one of the digital outputs to 0 (TTL low).

Syntax
Clear_Digout(bit_no)

Parameters

Notes
Clear_Digout accepts only constants as parameter. If you want to
specify the output to be deleted using a variable, use Digout_Word.

You have to configure the relevant channel as output, otherwise
Clear_Digout has no effect.
With Conf_DIO you can configure the digital channels in groups of 8 in-
puts or outputs. We recommend the digital channels to be configured
with Conf_DIO(1100b): Channels 0…15 as inputs, channels 16…31
as outputs.

Clear_Digout clears a bit in the output register of the channels
DIO16…DIO31. Therefore a TTL low is set at the corresponding chan-
nel, as long as it has been defined as output.

If you want to set one of the channels 0...15 to 0, clear the corresponding
bit in the output register of the channels DIO0…DIO15 (note: Configure
the channel as output first). Follow these steps (see example below):

• Read out the register with Peek.
• Clear the bit belonging to the channel (And masking).
• Write the value back into the register with Poke.

 You will find the register number in the table in the annex, chapter A.2.

See also
Clear_Digout, Conf_DIO, Digout_Word, Set_Digout, Peek, Poke, And

Valid for
Gold

Example
Dim val As Long 'Declaration

Init:
Set_Digout(0) 'Set digital output DIO16 to 1

Event:
val = ADC(1) 'Measurement data acquisition
If (val > 3000) Then
Clear_Digout(0) 'Clear dig. output DIO16

EndIf

A subroutine which sets a single bit of the DIO lines 0...15 to 0 could be
as follows:
Sub CLEAR_DIGOUT_CONN1(bitno)
Poke(204001C0h, Peek(204001C0h) And Not(Shift_Left(1,bitno))

)
EndSub

bit_no Bit number (0…15) which specifies the output
(see table).

CONST

LONG

bit_no 0 1 … 14 15
Output DIO16 DIO17 … DIO30 DIO31

Digital Inputs and Outputs
Conf_DIO ADwin

58 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Conf_DIO CONF_DIO configures the 32 digital channels in groups of 8 as inputs or out-
puts.

Syntax
Conf_DIO(pattern)

Parameters

Notes
Conf_DIO accepts only a constant as parameter pattern.

The digital channels are initially configured as inputs after power-up
(and cannot be used as outputs). They can only be configured in groups
of 8 as inputs or outputs.

It is recommended that you use the binary representation (suffix "b"). It
shows the allocation of bits to channel groups more clearly than decimal
or hexadecimal representations which can still be used if desired.

We recommend the use of the configuration Conf_DIO(1100b), which
specifies DIO00…DIO15 as inputs and DIO16…DIO31 as outputs.
The instructions Clear_Digout, Set_Digout, Digin_Word,
Digout_Word, Digin are dependent on this configuration; a different
configuration can interfere with or prevent the proper operation of these
commands.

If you use a configuration other than the recommend configuration, you
can only set and process the digital channels if you read out or write into
the corresponding hardware registers with Peek and Poke commands
(see table in the annex, chapter A.2).

See also
Clear_Digout, Digin, Digin_Word, Digout_Word, Set_Digout, Peek,
Poke

Valid for
Gold

Example
REM Configure DIO00…DIO15 as inputs
REM and DIO16…DIO31 as outputs
Conf_DIO(1100b)

pattern Bit pattern that configures the digital channels as
inputs or outputs:
Bit=0: Channels as inputs.
Bit=1: Channels as outputs.

CONST

LONG

Bi tno . i n
pattern

15…4 3 2 1 0

Channels – DIO31
…

DIO24

DIO23
…

DIO16

DIO15
…

DIO08

DIO07
…

DIO00

ADwin-Gold USB / ENET, manual version 4.3, January 2012 59

Digital Inputs and Outputs
DiginADwin

DiginDIGIN returns the value of one of the digital inputs DIO00…DIO15.

Syntax
ret_val = Digin(channel_no)

Parameters

Notes
Digin accepts only a constant as parameter channel_no.

Digin fits best for the reading of few bits. If several bits are to be read
(e.g. in a loop), the usage of the instruction Digin_Word is definitely
quicker. Please remember this for time-critical applications in particular.

The instruction requires that you configure the relevant channel as input.
If the channel is configured as output it will return an irrelevant value.

Conf_DIO can be used to configure the digital channels as inputs or
outputs in groups of 8. We recommend that you configure using
Conf_DIO(1100b)which specifies: Channels 0…15 as inputs and
channels 16…31 as outputs.

If you need the value of one of the channels DIO16…DIO31, then read
out the corresponding bit from the input register of these channels.
These channels must be configured as inputs first. Follow these steps
(see 2nd example DIGIN_CONN2):

• Read out the register with Peek.
• Clear all bits except the one belonging to the channel

(And-masking).

 You will find the register number in the table in the annex, chapter A.2.

See also
Conf_DIO, Digin, Digin_Word, Digout_Word, Peek, And

Valid for
Gold

Example
Dim Data_1[10000] As Long As FIFO

Event:
'Is digital input 0 set?
If (Digin(0) = 1) Then
Data_1 = ADC(1) 'Measurement data acquisition

EndIf

A function returning the value of one of the channels DIO16...DIO31
could be as follows:
Function DIGIN_CONN2(bitno) As Long
DIGIN_CONN2=Shift_Right(Peek(204001B0h), bitno) And 1

EndFunction

channel_n
o

Number which specifies the input to be queried
(see table below).

LONG

CONST

ret_val 1: TTL-level high.
0: TTL-level low.

LONG

channel_no 0 1 … 14 15
Input No. DIO00 DIO01 … DIO14 DIO15

Digital Inputs and Outputs
Digin_Word ADwin

60 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Digin_Word DIGIN_WORD returns the values of all digital inputs at the same time.

Syntax
ret_val = Digin_Word()

Parameters

Notes
Digin_Word requires that you have configured the channels
DIO00...DIO15 as inputs. If these channels are configured as output
channels, no useful value is returned.
With Conf_DIO you can configure the digital channels as inputs or out-
puts in groups of 8. We recommend that you configure them using
Conf_DIO(1100b)which specifies: Channels 0…15 as inputs, chan-
nels 16…31 as outputs.

If you need the values of the channels DIO16…DIO31, read out the in-
put register of these channels (please note: Configure the channels as
inputs first); see also 2nd example DIGIN_WORD_CONN2. You will find
the register number in the annex, chapter A.2. The bits in this return va-
lue are allocated to the channels as follows:

See also
Conf_DIO, Digout_Word, Peek

Valid for
Gold

Example
Dim Data_1[10000] As Long As FIFO

Event:
'Querying if the inputs 0 and 1 are set
If ((Digin_Word() And 11b) = 11b) Then
Data_1 = ADC(1) 'Measurement data acquisition

EndIf

A function which returns the value of the channels DIO16...DIO31, could
be as follows:
Function DIGIN_WORD_CONN2() As Long
DIGIN_WORD_CONN2=Peek(204001B0h)

EndFunction

ret_val Bit pattern that corresponds to the TTL-levels at
the digital inputs (see table).
1: TTL-level high .
0: TTL-level low .

LONG

Bit number in
ret_val

31 …
16

15 14 … 1 0

Input No. – DIO15 DIO14 … DIO01 DIO00

Bit No. 31 …
16

15 … 1 0

Input No. – DIO31 … DIO17 DIO16

ADwin-Gold USB / ENET, manual version 4.3, January 2012 61

Digital Inputs and Outputs
Digout_WordADwin

Digout_WordDIGOUT_WORD sets with a bit pattern all digital outputs to defined TTL-levels.

Syntax
Digout_Word(pattern)

Parameters

Notes
Digout_Word requires that you have configured the channels
DIO16...DIO31 as outputs. Otherwise it has no effect.

With Conf_DIO you can configure the digital channels as inputs our out-
puts in groups of 8. We recommend that you configure using
Conf_DIO(1100b)which specifies: Channels 0…15 as inputs, chan-
nels 16…31 as outputs.

If you want to set the outputs of the channels DIO00…DIO15, write the
corresponding bit pattern to the output register of these channels (plea-
se note: Configure channels as outputs first); see also 2nd example
DIGOUT_WORD_CONN1. You will find the register number in the annex,
chapter A.2.

See also
Conf_DIO, Digin_Word, Clear_Digout, Set_Digout, Poke

Valid for
Gold

Example
Dim value As Long

Init:
REM Configure inputs and output (for ADwin-Gold only)
Conf_DIO(1100b)

Event:
value = ADC(1) 'Measurement data acquisition
If (value > 3000) Then 'Is the limit value exceeded?
Digout_Word(101b) 'Set outputs 0 and 2,

'clear all other outputs
EndIf

pattern Bit pattern that corresponds to the TTL-levels at
the digital outputs (see table).
1: Set to TTL-level high.
0: Set to TTL-level low.

LONG

Bi t -N r. i n
pattern

31…16 15 … 1 0

Ausgang Nr. – DIO31 … DIO17 DIO16

Digital Inputs and Outputs
Digout_Word ADwin

62 ADwin-Gold USB / ENET, manual version 4.3, January 2012

A program setting TTL-levels of channels DIO00 … DIO15, could be as
follows:
Init:
Conf_DIO(1111b) 'configure all channels as outputs

Event:
If (ADC(1) > 3000) Then 'value limit exceeded?
Digout_Word_CONN1(0FFFh) 'set outputs 0…15

EndIf

Sub Digout_Word_CONN1(value)
Poke(204001C0h,value)

EndSub

ADwin-Gold USB / ENET, manual version 4.3, January 2012 63

Digital Inputs and Outputs
Set_DigoutADwin

Set_DigoutSET_DIGOUT sets one of the digital outputs to 1 (TTL-level high).

Syntax
Set_Digout(bit_no)

Parameters

Notes
Set_Digout accepts only a constant as parameter bit_no.

Set_Digout fits best for the setting of few bits. If several bits are to be
set (e.g. in a loop), the usage of the instruction Digout_Word is defini-
tely quicker. Please remember this for time-critical applications in parti-
cular.

If you want to set the output using a variable, use the instruction
Digout_Word.

Set_Digout requires that you have previously configured the corre-
sponding channel as an output. Otherwise it performs no action.

With Conf_DIO you can configure the digital channels as inputs or out-
puts in groups of 8. We recommend that you configure them using
Conf_DIO(1100b)which specifies: Channels 0…15 as inputs, chan-
nels 16…31 as outputs.

Set_Digout sets one bit in the output register of the channels
DIO16…DIO31. If you have set the corresponding channel as output it
will generate a TTL-level high.

If you want to set one of the channels 0...15 to 1, set the corresponding
bit in the output register of the channels DIO0…DIO15 using the Poke
command (note: Configure the channel as output first). Follow these
steps (see 2nd example SET_DIGOUT_CONN1):

• Read out the register with Peek.
• Set the bit belonging to the channel (Or-masking).
• Write the value with Poke into the register.

 You will find the register number in the annex, chapter A.2.

See also
Clear_Digout, Conf_DIO, Digout_Word, Peek, Poke, And

Valid for
Gold

bit_no Bit number (0…15) which specifies the output
(see table).

CONST

LONG

bit_no 0 1 … 5 … 15
Output in
ADwin-Gold

DIO16 DIO17 … DIO21 … DIO31

Output in
ADwin-light-

16

0 1 … 5 – –

Digital Inputs and Outputs
Set_Digout ADwin

64 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Example
Dim val As Long

Init:
'Configure digital inputs/output (ADwin-Gold only)
Conf_DIO(1100b)

Event:
val = ADC(1) 'Measurement data acquisition
If (val > 3000) Then
Set_Digout(0) 'Set digital output DIO16 to 1

EndIf

A subroutine which sets a single bit of the DIO-lines 0...15 to 1 could be
as follows:
Sub SET_DIGOUT_CONN1(bitno)
Poke(204001C0h, Peek(204001C0h) Or Shift_Left(1,bitno))

EndSub

ADwin-Gold USB / ENET, manual version 4.3, January 2012 65

CounterADwin
12.3 Counter
This section describes the following instructions:

– Cnt_Clear (page 66)

– Cnt_Enable (page 67)

– Cnt_GetStatus (page 68)

– Cnt_InputMode (page 69)

– Cnt_Latch (page 70)

– Cnt_Mode (page 72)

– Cnt_Read (page 73)

– Cnt_ReadLatch (page 74)

– Cnt_ReadFLatch (page 76)

– Cnt_ResetStatus (page 78)

– Cnt_Set (page 80)

– Cnt_SE_Diff (page 81)

Counter
Cnt_Clear ADwin

66 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Cnt_Clear Cnt_Clear sets one or more counters to zero, according to the bit pattern in
pattern.

Syntax
#Include ADWGCNT.Inc

Cnt_Clear(pattern)

Parameters

Notes
After Cnt_Clear has been executed the bit pattern is automatically re-
set to 0 (zero), so the counters start counting from 0.

See also
Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch, Cnt_Mode,
Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_ResetStatus,
Cnt_Set, Cnt_SE_Diff

Valid for
Gold-CO1

Example
#Include ADWGCNT.Inc
Dim old_1, new_1 As Long'Dimension
Dim old_2, new_2 As Long'the variables

Init:
old_1 = 0 'Initialize
old_2 = 0 'the variables
Cnt_SE_Diff(11b) 'All counter inputs differential
Cnt_Mode(0) 'All counters on external clock

input
Cnt_Set(11b) 'counters 1+2 with clock (CLK)

and
'direction (DIR) input

Cnt_InputMode(0) 'Determine functionality
CLR/LATCH:

'All as CLR input
Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(11b) 'Start counters 1+2

Event:
Cnt_Latch(11b) 'Latch counters 1+2

simultaneously
new_1 = Cnt_ReadLatch(1)'read out Latch A counter 1 and...
new_2 = Cnt_ReadLatch(2)'Latch A counter 2.
Par_1 = new_1 - old_1'Calculate the difference (f = impulses

/ time)
Par_2 = new_2 - old_2' -"-
old_1 = new_1 'Save new counter values
old_2 = new_2 ' -"-

pattern Bit pattern.
Bit = 0: no influence.
Bit = 1: set counter to zero.

LONG

Bit no. 31…4 3 2 1 0
Coun te r
no.

– 4 3 2 1

ADwin-Gold USB / ENET, manual version 4.3, January 2012 67

Counter
Cnt_EnableADwin

Cnt_EnableCnt_Enable disables or enables the counters set by pattern, to count inco-
ming impulses.

Syntax
#Include ADWGCNT.Inc

Cnt_Enable(pattern)

Parameters

See also
Cnt_Clear, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch, Cnt_Mode,
Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_ResetStatus,
Cnt_Set, Cnt_SE_Diff

Valid for
Gold-CO1

Example
#Include ADWGCNT.Inc
Dim old_1, new_1 As Long ' Dimension
Dim old_2, new_2 As Long ' the variables

Init:
old_1 = 0 'Initialize
old_2 = 0 ' the variables
Cnt_SE_Diff(11b) 'All counter inputs differential
Cnt_Mode(0) 'All counters on external clock

input
Cnt_Set(11b) 'Counters 1+2 with clock (CLK)

and
'direction (DIR) inputs

Cnt_InputMode(0) 'Determine functionality: At all
'counters as CLR-input

Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(11b) 'Start counters 1+2

Event:
Cnt_Latch(11b) 'Latch counters 1+2

simultaneously
new_1 = Cnt_ReadLatch(1)'read out Latch A counter 1 and...
new_2 = Cnt_ReadLatch(2)'Latch A counter 2.
Par_1 = new_1 - old_1 'Calculate the difference (f =

impulses / time)
Par_2 = new_2 - old_2 '-"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 '-"-

pattern Bit pattern.
Bit = 0: stop counter.
Bit = 1: enable counter.

LONG

Bit no. 31…4 3 2 1 0
Coun te r
no.

– 4 3 2 1

Counter
Cnt_GetStatus ADwin

68 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Cnt_GetStatus Cnt_GetStatus reads out and returns the counter status register.

Syntax
#Include ADWGCNT.Inc

ret_val = Cnt_GetStatus()

Parameters

Notes
A line error (Lx) can only be detected at differential inputs! For TTL-in-
puts these bits are always 0.

The status register is not reset by reading it; use Cnt_ResetStatus in-
stead.

See also
Cnt_Clear, Cnt_Enable, Cnt_InputMode, Cnt_Latch, Cnt_Mode,
Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_ResetStatus,
Cnt_Set, Cnt_SE_Diff

Valid for
Gold-CO1

Example
- / -

ret_val Contents of the status register: In case of error,
refer to the table for the meaning of the individual
bits.

LONG

Bit
Nr.

1
5

1
4

1
3

1
2 11 1

0
0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

Sig-
nal

- - - - - - - - N
4

N
3

N
2

N
1

- - - -

Bit
Nr.

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

Sig-
nal

L
4

C
4

L
3

C
3

L
2

C
2

L
1

C
1

B
4

A
4

B
3

A
3

B
2

A
2

B
1

A
1

 - :don't care (signal status is not defined, mask out with FF FF 00 F0h)
Ax:Signal A (signal is not changing states)
Bx: Signal B (signal is not changing states)
Cx:Correlation error (signals A and B are identical, they are not
phase-shifted by approx. 90°)
Lx: Line error (cable not connected or the line is broken)
Nx:CLR-/LATCH-input (signal is not changing state)
x:Counter number (1…4)

ADwin-Gold USB / ENET, manual version 4.3, January 2012 69

Counter
Cnt_InputModeADwin

Cnt_InputModeCnt_InputMode sets the function of the CLR/LATCH input of one or more
counters.

Syntax
#Include ADWGCNT.Inc

Cnt_InputMode(pattern)

Parameters

Notes
Use this instruction only when the counter is not enabled.

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_Latch, Cnt_Mode,
Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_ResetStatus,
Cnt_Set, Cnt_SE_Diff

Valid for
Gold-CO1

Example
#Include ADWGCNT.Inc
Dim old_1, new_1 As Long'Dimension...
Dim old_2, new_2 As Long'variables

Init:
old_1 = 0 'Initialize...
old_2 = 0 'variables
Cnt_SE_Diff(11b) 'All counter inputs differential
Cnt_Mode(0) 'All counters on external clock

input
Cnt_Set(11b) 'Counters 1+2 with clock (CLK)

and
'direction (DIR) input

Cnt_InputMode(0) 'Determine functionality
CLR/LATCH: As

'CLR-input at all counters
Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(11b) 'Start counters 1+2

Event:
Cnt_Latch(11b) 'Latch counters 1+2

simultaneously
new_1 = Cnt_ReadLatch(1)'Read out latch A counter 1 and...
new_2 = Cnt_ReadLatch(2)'latch A counter 2.
Par_1 = new_1 - old_1 'Calculate the difference (f =

impulses / time)
Par_2 = new_2 - old_2 ' -"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 ' -"-

pattern Bit pattern.
Bit = 0: Set CLR-mode.
Bit = 1: Set LATCH-mode.

LONG

Bit no. 31…4 3 2 1 0
Coun te r
no.

– 4 3 2 1

Counter
Cnt_Latch ADwin

70 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Cnt_Latch Cnt_Latch transfers the current counter values of one or more counters into
the relevant Latch A, depending on the bit pattern in pattern.

Syntax
#Include ADWGCNT.Inc

Cnt_Latch(pattern)

Parameters

Notes
After the instruction has been executed the bit pattern is automatically
reset to 0 (zero).

Latch A is read out into a variable with Cnt_ReadLatch command.

Valid for
Gold-CO1

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Mode,
Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_ResetStatus,
Cnt_Set, Cnt_SE_Diff

pattern Bit pattern.
Bit = 0: no function.
Bit = 1: transfer counter values into Latch A .

LONG

Bit no. 31…4 3 2 1 0
Coun te r
no.

– 4 3 2 1

ADwin-Gold USB / ENET, manual version 4.3, January 2012 71

Counter
Cnt_LatchADwin

Example
#Include ADWGCNT.Inc
Dim old_1, new_1 As Long'Dimension...
Dim old_2, new_2 As Long'the variables

Init:
old_1 = 0 'Initialize
old_2 = 0 'the variables
Cnt_SE_Diff(11b) 'All counter inputs differential
Cnt_Mode(0) 'All counters on external clock

input
Cnt_Set(11b) 'Counters 1+2 with clock (CLK)

and
'direction (DIR) input

Cnt_InputMode(0) 'Determine functionality
CLR/LATCH: As

'CLR-input at all counters
Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(11b) 'Start counters 1+2

Event:
Cnt_Latch(11b) 'Latch counters 1+2

simultaneously and then...
new_1 = Cnt_ReadLatch(1)'read out Latch A counter 1 and...
new_2 = Cnt_ReadLatch(2)'Latch A counter 2.
Par_1 = new_1 - old_1 'Calculate the difference (f =

impulses / time)
Par_2 = new_2 - old_2 '-"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 '-"-

Counter
Cnt_Mode ADwin

72 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Cnt_Mode Cnt_Mode defines the operating mode of all counters by selecting which clock
input they use according to the bit pattern in pattern.

Syntax
#Include ADWGCNT.Inc

Cnt_Mode(pattern)

Parameters

Notes
Cnt_Set determines the mode of the selected clock input.

Please use Cnt_Mode only when the counter is disabled.

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch,
Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_ResetStatus,
Cnt_Set, Cnt_SE_Diff

Valid for
Gold-CO1

Example
#Include ADWGCNT.Inc
Dim old_1, new_1 As Long'Dimension
Dim old_2, new_2 As Long'the variables

Init:
old_1 = 0 'Initialize
old_2 = 0 'the variables
Cnt_SE_Diff(11b) 'All counter inputs differential
Cnt_Mode(0) 'All counters on external clock

input
Cnt_Set(1) 'Counter 1 with 20 MHz
Cnt_InputMode(0) 'Determine the functionality

CLR/LATCH
' As CLR-input at all counters

Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(11b) 'Start counters 1+2

Event:
Cnt_Latch(11b) 'Latch counters 1+2

simultaneously and then...
new_1 = Cnt_ReadLatch(1) 'Read out Latch A counter 1

and...
new_2 = Cnt_ReadLatch(2)'Latch A counter 2.
Par_1 = new_1 - old_1 'Calculate the difference (f =

impulses / time)
Par_2 = new_2 - old_2 '-"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 '-"-

pattern Bit pattern.
Bit = 0: external clock input (CLK/DIR or A/B).
Bit = 1: internal clock input (5 MHz or 20 MHz).

LONG

Bit no. 31…4 3 2 1 0
Coun te r
no.

– 4 3 2 1

ADwin-Gold USB / ENET, manual version 4.3, January 2012 73

Counter
Cnt_ReadADwin

Cnt_ReadCnt_Read transfers the current counter value into Latch A and returns it as
return value.

Syntax
#Include ADWGCNT.Inc

ret_val = Cnt_Read(CounterNo)

Parameters

Notes
Use the return value in calculations only with variables of the type Long
(e.g. differences or count direction).

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch,
Cnt_Mode, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_ResetStatus,
Cnt_Set, Cnt_SE_Diff

Valid for
Gold-CO1

Example
#Include ADWGCNT.Inc
Dim old_1, new_1 As Long'Dimension...
Dim old_2, new_2 As Long'the variables

Init:
old_1 = 0 'Initialize...
old_2 = 0 'the variables
Cnt_SE_Diff(11b) 'All counter inputs differential
Cnt_Mode(0) 'All counters on external clock

input
Cnt_Set(11b) 'Counters 1+2 with clock (CLK)

and
'direction (DIR) inputs

Cnt_InputMode(0) 'Determine functionality
CLR/LATCH: At

'all as CLR-input
Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(11b) 'Start counters 1+2

Event:
new_1 = Cnt_Read(1) 'Latch counter 1 and read out

Latch A afterward
new_2 = Cnt_Read(2) 'Latch counter 2 and read out

Latch A afterward
Par_1 = new_1 - old_1 'Calculate the difference (f =

impulses / time)
Par_2 = new_2 - old_2 ' -"-
old_1 = new_1 'Save new counter values as old
old_2 = new_2 ' -"-

CounterNo Counter number: 1…4. LONG

ret_val Counter value. LONG

Counter
Cnt_ReadLatch ADwin

74 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Cnt_ReadLatch Cnt_ReadLatch returns the value of a counter previously stored in Latch A.

Syntax
#Include ADWGCNT.Inc

ret_val = Cnt_ReadLatch(CounterNo)

Parameters

Notes
Use the return value in calculations only with variables of the type Long
(e.g. differences or count direction).

The point of time when the current counter value is latched depends on
the Cnt_Mode settings:

• External clock input (Cnt_Mode bit = 0): Only the instruction
Cnt_Latch latches the counter.

• Internal clock input (Cnt_Mode bit = 1): Any edge of the external
measurement signal latches the counter.
At a positive edge of the input signal the counter values are latched
into Latch A, whereas at a negative edge of the input signal the
counter values are latched into Latch B.

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch,
Cnt_Mode, Cnt_Read, Cnt_ReadFLatch, Cnt_ResetStatus, Cnt_Set,
Cnt_SE_Diff

Valid for
Gold-CO1

CounterNo Counter number: 1…4. LONG

ret_val Contents of Latch A . LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 75

Counter
Cnt_ReadLatchADwin

Example
#Include ADWGCNT.Inc

Dim rise, rise_old, fall, fall_old As Long
#Define high Par_1
#Define low Par_2
#Define T Par_9
#Define f Par_10

Init:
rise_old = 0 'Initialize the variables
fall_old = 0
Cnt_SE_Diff(11b) 'All counter inputs differential
Cnt_Mode(11b) 'Counters 1+2 on internal clock

input
Cnt_Set(0) 'All counters with 20 MHz

internal
'reference clock

Cnt_InputMode(11b) 'Determine functionality
CLR/LATCH: At

'counters 1+2 as LATCH input
Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(1) 'Start couner 1

Event:
rise = Cnt_ReadLatch(1)'Read out Latch A counter 1
fall = Cnt_ReadFLatch(1)'Read out Latch B counter 1
If (rise <> rise_old) Then'Is a rising edge detected?
T = rise - rise_old 'Period duration in nanoseconds
f = 1E9 / T 'Frequency in Hertz
If (fall <> fall_old) Then'Is a falling edge detected?
 high = (fall - rise) * 25'Impulse duration in nanoseconds
 low = (rise - fall_old) * 25'Pause duration in

nanoseconds
Else 'No falling edge is detected
 high = (fall - rise_old) * 25'Impulse duration in

nanoseconds
 low = (rise - fall) * 25 'Pause duration in nanoseconds
EndIf

EndIf
rise_old = rise 'Save contents of the latch
fall_old = fall 'Save contents of the latch

Counter
Cnt_ReadFLatch ADwin

76 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Cnt_ReadFLatch Cnt_ReadFLatch returns the value of a counter previously stored in Latch B.

Syntax
#Include ADWGCNT.Inc

ret_val = Cnt_ReadFLatch(CounterNo)

Parameters

Notes
Use the return value in calculations only with variables of the type Long
(e.g. differences or count direction).

The point of time when the current counter value is latched depends on
the Cnt_Mode settings:

• External clock input (Cnt_Mode bit = 0): Only the instruction
Cnt_Latch latches the counter.

• Internal clock input (Cnt_Mode bit = 1): Any edge of the external
measurement signal latches the counter.
At a positive edge of the input signal the counter values are latched
into Latch A, whereas at a negative edge of the input signal the
counter values are latched into Latch B.

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch,
Cnt_Mode, Cnt_Read, Cnt_ReadLatch, Cnt_ResetStatus, Cnt_Set,
Cnt_SE_Diff

Valid for
Gold-CO1

CounterNo Counter number: 1…4. LONG

ret_val Contents of Latch B. LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 77

Counter
Cnt_ReadFLatchADwin

Example
#Include ADWGCNT.Inc
Dim rise, rise_old, fall, fall_old As Long
#Define high Par_1
#Define low Par_2
#Define T Par_9
#Define f Par_10

Init:
rise_old = 0 'Initialize...
fall_old = 0 ' the variables
Cnt_SE_Diff(11b) 'All counter inputs differential
Cnt_Mode(11b) 'Counters 1+2 on internal clock

input
Cnt_Set(0) 'All counters with 20 MHz

internal
'clock reference

Cnt_InputMode(11b) 'Determine functionality
CLR/LATCH: At

'counters 1+2 as LATCH inputs
Cnt_Clear(11b) 'Reset counters 1+2 to 0
Cnt_Enable(1) 'Start counter 1

Event:
rise = Cnt_ReadLatch(1)'Read out Latch A counter 1
fall = Cnt_ReadFLatch(1)'Read out Latch B counter 1
If (rise <> rise_old) Then'Is a rising edge detected?
T = rise - rise_old 'Period duration in nanoseconds
f = 1E9 / T 'Frequency in Hertz
If (fall <> fall_old) Then'Is a falling edge detected?
 high = (fall - rise) * 25'Impulse duration in nanoseconds
 low = (rise - fall_old) * 25'Pause duration in

nanoseconds
Else 'No falling edge detected
 high = (fall - rise_old) * 25'Impulse duration in

nanoseconds
 low = (rise - fall) * 25 'Pause duration in nanoseconds
EndIf

EndIf
rise_old = rise 'Save contents of the latch
fall_old = fall 'Save contents of the latch

Counter
Cnt_ResetStatus ADwin

78 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Cnt_ResetStatus Cnt_ResetStatus clears the status register of all four 32 bit-counters.

Syntax
#Include ADWGCNT.Inc

Cnt_ResetStatus()

Parameters
- / -

Notes
The status register is read out with the instruction Cnt_GetStatus.

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch,
Cnt_Mode, Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch, Cnt_Set,
Cnt_SE_Diff

Valid for
Gold-CO1

ADwin-Gold USB / ENET, manual version 4.3, January 2012 79

Counter
Cnt_ResetStatusADwin

Example
#Include ADWGCNT.Inc

Dim error As Long

Dim old_1, new_1 As Long 'Dimensioning…
Dim old_2, new_2 As Long ' variables

Init:
Cnt_Enable(0) 'Stop all counters
Cnt_Clear(1111b) 'Clear all counters
Cnt_SE_Diff(11b) 'Set all counters to diff. inputs
Cnt_Mode(0) 'Set external event input
Cnt_Set(0) 'Set mode 4 edge evaluation
Cnt_InputMode(0) 'Enable CLR counter input
Cnt_Enable(1111b) 'Start all counters
old_1 = 0 'Initialize…
old_2 = 0 ' variables
error = 0 'Initialize error flag

Event:
Par_1 = Cnt_Read(1) 'Read counter 1
Par_2 = Cnt_GetStatus(1) And 0FFFF00F0h 'Read out and mask

'status register counter 1
If (Par_2 And 2000000h = 2000000h) Then'Line or cable error

'counter 1?
Inc Par_3 'Number of line or cable errors

until now...
error = 1 'Set error flag

EndIf
If (Par_2 And 1000000h = 1000000h) Then'Correlation error

cnt 1?
Inc Par_4 'Number of correlation errors

until now...
error = 1 'Set error flag

EndIf
Cnt_ResetStatus() 'Clear bits of line and

correlation errors
Par_5 = Shift_Right(Par_2 And 10h,4) 'status of CLR-input
Par_6 = Shift_Right(Par_2 And 10000h,16) 'status of input A
Par_7 = Shift_Right(Par_2 And 20000h,17) 'status of input B

Counter
Cnt_Set ADwin

80 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Cnt_Set Cnt_Set defines the operating mode for all counters (depending on
Cnt_Mode) according to the given bit pattern.

Syntax
#Include ADWGCNT.Inc

Cnt_Set(pattern)

Parameters

Notes
Please use this instruction only when the counter is disabled.

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch,
Cnt_Mode, Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch,
Cnt_ResetStatus, Cnt_SE_Diff

Valid for
Gold-CO1

Example
#Include ADWGCNT.Inc

Init:
Cnt_SE_Diff(11b) 'All counter inputs differential
Cnt_Mode(0) 'All counters on external clock

input
Cnt_Set(1100b) 'Counters 3+4 with

clock/direction evaluation,
'Counters 1+2 with 4 edge

evaluation
Cnt_Clear(1100b) 'Set counters 3+4 to 0
Cnt_Enable(1100b) 'Enable counters 3+4, disable

counters 1+2

pattern Bit pattern, for the meaning of the bits see table
below.

LONG

Bit value
in

pattern

External clock input
Bit = 0 in Cnt_Mode

Internal clock input
Bit = 1 in Cnt_Mode

Bit = 0 4-edge evaluation Reference clock 20 MHz
Bit = 1 Clock and direction input Reference clock 5 MHz

Bit no. 31…4 3 2 1 0
Coun te r
no.

– 4 3 2 1

ADwin-Gold USB / ENET, manual version 4.3, January 2012 81

Counter
Cnt_SE_DiffADwin

Cnt_SE_DiffCnt_SE_Diff sets counter inputs to the input mode single-ended or differen-
tial as pairs.

Syntax
#Include ADWGCNT.Inc

Cnt_SE_Diff(CounterNo)

Parameter

Notes
After start-up, the operating mode of the counter inputs is undefined; all
of the counter inputs have to be set to the desired operating mode.

See also
Cnt_Clear, Cnt_Enable, Cnt_GetStatus, Cnt_InputMode, Cnt_Latch,
Cnt_Mode, Cnt_Read, Cnt_ReadLatch, Cnt_ReadFLatch,
Cnt_ResetStatus, Cnt_Set

Valid for
Gold-CO1

CounterNo Bit pattern to choose the counter pairs (see table)
and set the input mode:
Bit = 0: Run inputs single-ended.
Bit = 1: Run inputs differential.

LONG

Bit no. in pattern 31 … 2 1 0
Inputs of counters
no.

– 3 + 4 1 + 2

Counter
Cnt_SE_Diff ADwin

82 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Example
#Include ADWGCNT.Inc
Dim error As Long 'Dimensioning…
Dim old_1, new_1 As Long' variables
Dim old_2, new_2 As Long

Init:
Cnt_Enable(0) 'Stop all counters
Cnt_Clear(1111b) 'Clear all counters
Cnt_SE_Diff(11b) 'Set all counters to diff. inputs
Cnt_Mode(0) 'Set external event input
Cnt_Set(0) 'Set mode 4 edge evaluation
Cnt_InputMode(0) 'Enable CLR counter input
Cnt_Enable(1111b) 'Start all counters
old_1 = 0 'Initialize…
old_2 = 0 ' variables
error = 0 'Initialize error flag

Event:
Par_1 = Cnt_Read(1) 'Read out counter 1
Par_2 = Cnt_GetStatus(1) And 0FFFF00F0h'Read out and mask

'status register counter 1
If (Par_2 And 2000000h = 2000000h) Then'Line or cable error

cnt 1?
Inc Par_3 'Number of line or cable errors

until now...
error = 1 'Set error flag

EndIf
If (Par_2 And 1000000h = 1000000h) Then'Correlation error

cnt 1?
Inc Par_4 'Number of correlation errors

until now...
error = 1 'Set error flag

EndIf
Cnt_ResetStatus() 'Clear bits of line and

correlation errors
Par_5 = Shift_Right(Par_2 And 10h,4) 'status of CLR-input
Par_6 = Shift_Right(Par_2 And 10000h,16) 'status of input A
Par_7 = Shift_Right(Par_2 And 20000h,17) 'status of input B

ADwin-Gold USB / ENET, manual version 4.3, January 2012 83

CAN interfaceADwin
12.4 CAN interface
This section describes the following instructions:

– CAN_Msg (page 84)

– En_CAN_Interrupt (page 86)

– En_Receive (page 87)

– En_Transmit (page 88)

– Get_CAN_Reg (page 89)

– Init_CAN (page 90)

– Read_Msg (page 91)

– Read_Msg_Con (page 93)

– Set_CAN_Baudrate (page 95)

– Set_CAN_Reg (page 96)

– Transmit (page 97)

CAN interface
CAN_Msg ADwin

84 ADwin-Gold USB / ENET, manual version 4.3, January 2012

CAN_Msg CAN_Msg[] is a one-dimensional array of 9 elements, where CAN message
objects are stored.

Syntax
#Include ADWGCAN.Inc

CAN_Msg[n] = value

or

value = CAN_Msg[n]

Parameters

Notes
The elements of the array CAN_Msg[] have the following functions:

Enter the values to be transferred into the field CAN_Msg[], before
transferring them with Transmit.

See also
Init_CAN, Read_Msg, Read_Msg_Con, Transmit

Valid for
Gold-CAN

n Element number in the array CAN_Msg (1…9). LONG

value Value (8 bit), which is to be written into or
read from the message object.

LONG

Element
no.

1…8 9

Contents Message objects
= data bytes

Number (0…8)
of allocated data

bytes

ADwin-Gold USB / ENET, manual version 4.3, January 2012 85

CAN interface
CAN_MsgADwin

Example
#Include ADWGCAN.Inc
REM Sends a 32 Bit FLOAT-value (here: Pi) as sequence of
REM 4 bytes in a message object
REM (Receiving of a float value see Example at Read_Msg)

#Define pi 3.14159265
Dim i As Long

Init:
Init_CAN(1) 'Initialize CAN controller 1

REM Enable message object 6 of controller 1 with the
REM for sending with the identifier 40 (11 bit)
En_Transmit(1, 6,40,0)

REM Create bit pattern of Pi with data type Long
Par_1 = Cast_FloatToLong(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_Msg[4] = Par_1 And 0FFh 'assign LSB
For i = 1 To 3
CAN_Msg[4-i] = Shift_Right(Par_1,8*i) And 0FFh

Next i
CAN_Msg[9] = 4 'message length in bytes

Event:
Transmit(1,6) 'Send message object 6

CAN interface
En_CAN_Interrupt ADwin

86 ADwin-Gold USB / ENET, manual version 4.3, January 2012

En_CAN_Interrupt EN_CAN_INTERRUPT configures a specified message object of a CAN inter-
face to generate an external event when a message arrives.

Syntax
#Include ADWGCAN.Inc

En_CAN_Interrupt(can_no, msg_no)

Parameters

Notes
- / -

See also
CAN_Msg, En_Receive, Get_CAN_Reg, Set_CAN_Reg

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc

Init:
Init_CAN(1) 'Initialization of CAN

controller 1
En_Receive(1,1,200,0) 'Initialize the message object 1

of
'controller 1 to receive CAN

messages
'with the identifier 200

En_CAN_Interrupt(1,1) 'Enables the triggering of
interrupts

'(ext. EVENT) when receiving the
'message object 1

can_no Number (1, 2) of CAN interface. LONG

msg_no Number (1…15) of message object. LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 87

CAN interface
En_ReceiveADwin

En_ReceiveEn_Receive enables a specified message object of a CAN inteface to receive
messages.

Syntax
#Include ADWGCAN.Inc

En_Receive(can_no, msg_no, id, id_extend)

Parameters

See also
CAN_Msg, En_Transmit, Read_Msg, Read_Msg_Con

Notes
A message object can only receive messages from the CAN bus when
you have previously enabled it to receive with En_Receive.

The message object only receives messages with the identifier you
have specified.

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc

Init:
Init_CAN(1) 'Initialization of CAN

controller 1
En_Receive(1,1,200,0) 'Initialize the message object 1

of
'controller 1 to receive CAN

messages
'with the identifier 200

can_no Number (1, 2) of CAN interface. LONG

msg_no Number (1…15) of message object. LONG

id Identifier (0…211 or 0…229) of the messages,
which can be received in this message object.

LONG

id_extend Length of the identifer:
0: 11 bits.
1: 29 bits.

LONG

CAN interface
En_Transmit ADwin

88 ADwin-Gold USB / ENET, manual version 4.3, January 2012

En_Transmit EN_Transmit enables a specified message object of a CAN inteface to send
messages.

Syntax
#Include ADWGCAN.Inc

En_Transmit(can_no, msg_no, id, id_extend)

Parameters

Notes
A message object can only send messages to the CAN bus when you
have it previously enabled to send with En_Transmit.

See also
CAN_Msg, En_Receive, Transmit

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc

Init:
Init_CAN(1) 'Initialization of CAN

controller 1
REM Initialize message objects 6 of controller 1:
REM Object 1 to receive with identifier 200
REM Object 1 to send with identifier 40
En_Receive(1,1,200,0)
En_Transmit(1,6,40,0)

can_no Number (1, 2) of CAN interface. LONG

msg_no Number (1…14) of message object. LONG

id Identifier which is sent with the messages of this
message object.

LONG

id_extend Length of the identifier:
0: 11 bits.
1: 29 bits.

LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 89

CAN interface
Get_CAN_RegADwin

Get_CAN_RegGET_CAN_REG reads the value of a specified register in one of the CAN con-
trollers.

Syntax
#Include ADWGCAN.Inc

ret_val = Get_CAN_Reg(can_no, regno)

Parameters

Notes

You will find the register list of the CAN controller in the Intel® AN82527
data sheet.

See also
Init_CAN, Set_CAN_Baudrate, Set_CAN_Reg

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc
Init:
Init_CAN(1) 'Initialization of CAN

controller 1
Par_1 = Get_CAN_Reg(1,0)'Read out the control register

can_no Number (1, 2) of CAN interface. LONG

regno Register number in the CAN controller (0…255). LONG

ret_val Contents of the register (transferred to the lower
8 bits).

LONG

CAN interface
Init_CAN ADwin

90 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Init_CAN Init_CAN initializes one of the CAN controllers.

Syntax
#Include ADWGCAN.Inc

Init_CAN(can_no)

Parameters

Notes
The instruction carries out the following steps:

• Reset (hardware reset of the CAN controller)
• All filters are set to "must match".
• Clockout register is set to 0 (= the external frequency is not divided).
• The register "Bus Configuration" is set to 0.
• The transfer rate for the CAN bus is set to 1 MBit/s.
• All message objects are disabled.

You have to execute this instruction before you access the CAN control-
ler with other instructions. We recommend you place this instruction in
the process section LowInit: or Init:.

See also
CAN_Msg, En_CAN_Interrupt, En_Receive, En_Transmit, Get_CAN_
Reg, Set_CAN_Baudrate, Set_CAN_Reg

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc

Init:
Init_CAN(1) 'Initialize CAN controller 1

can_no Number (1, 2) of CAN interface. LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 91

CAN interface
Read_MsgADwin

Read_MsgRead_Msg checks if new messages have been received in a specified mes-
sage object of CAN interface.
If so, the message is saved in CAN_Msg and the identifier of the message is
returned.

Syntax
#Include ADWGCAN.Inc

ret_val = Read_Msg(can_no, msg_no)

Parameters

Notes
To receive a message you have to follow the correct order:

• Once: Enable the message object with En_Receive for receiving.
• As often as needed: Check for a received message and save to

CAN_Msg with Read_Msg.

You can read a received message only once.

See also
CAN_Msg, En_CAN_Interrupt, En_Receive, En_Transmit, Read_Msg

Valid for
Gold-CAN

can_no Number (1, 2) of CAN interface. LONG

msg_no Number (1…15) of message object. LONG

ret_val -1: No new message.
>0:New message received; value = identifier of

the message.

LONG

CAN interface
Read_Msg ADwin

92 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Example
#Include ADWGCAN.Inc
REM If a new message with the correct identifier is received
REM the data is read out. The first 4 bytes of the message are
REM combined to a float value of length 32 bit.
Dim n As Long

Init:
Par_1 = 0
Init_CAN(1) 'Initialize CAN controller 1
En_Receive(1,1,40,0) 'Initialize the message object 1

of
'controller 1 to receive CAN

messages
'with identifier 40

Event:
REM If the message is changed, read out the received data
REM from object 1 and save the identifier to parameter 9.
REM The data bytes are in the array CAN_MSG[].
Par_9 = Read_Msg(1,1)

If (Par_9 = 40) Then
REM New message for message object with the identifier 40
REM has arrived
Par_1 = CAN_Msg[1] 'Read out high-byte
For n = 2 To 4 'Combine with remaining 3 bytes

to
 Par_1 = Shift_Left(Par_1,8) + CAN_Msg[n]'a 32-bit value
Next n
REM Convert the bit pattern in Par_1 to data type FLOAT and
REM assign to the variable FPar_1.
FPar_1 = Cast_LongToFloat(Par_1)

EndIf

Sending a float value see example at Transmit.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 93

CAN interface
Read_Msg_ConADwin

Read_Msg_ConRead_Msg_Con checks if a complete new message has been received in a
specified message object.
If so, the message is saved in CAN_Msg and the identifier of the message is
returned.

Syntax
#Include ADWGCAN.Inc

ret_val = Read_Msg_Con(can_no, msg_no)

Parameters

Notes
In contrary to Read_Msg, Read_Msg_Con makes sure the message is
consistent: If a new message arrives while reading an old message, the-
re is no mixture of old and new message.

To receive a message, follow these steps:
• Enable the message object for receive with En_Receive.
• Check for a new message, and if, store the message in CAN_Msg

with Read_Msg.

You can read a received message only once.

See also
CAN_Msg, En_CAN_Interrupt, En_Receive, En_Transmit, Read_Msg

Valid for
Gold-CAN

can_no Number (1, 2) of CAN interface. LONG

msg_no Number (1…15) of message object. LONG

ret_val -1: no new message arrived.
>0:new message; ret_val = message identifier.

LONG

CAN interface
Read_Msg_Con ADwin

94 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Example
#Include ADWGCAN.Inc
REM If a new message with the correct identifier is received
REM the data is read out. The first 4 bytes of the message are
REM combined to a float value of length 32 bit.
Dim n As Long

Init:
Par_1 = 0
Init_CAN(1) 'Initialize CAN controller 1
En_Receive(1,1,40,0) 'Initialize the message object 1

'to receive CAN messages with
'identifier 40

Event:
REM If the message is changed, read out the received data
REM from object 1 and transfer the identifier to parameter 9.
REM The data bytes are in the array CAN_MSG[].
Par_9 = Read_Msg_Con(1,1)

If (Par_9 = 40) Then
REM New message for message object with the identifier 40
REM has arrived
Par_1 = CAN_Msg[1] 'Read out high-byte
For n = 2 To 4 'Combine with remaining 3 bytes

to
 Par_1 = Shift_Left(Par_1,8) + CAN_Msg[n]'a 32-bit value
Next n
REM Convert the bit pattern in Par_1 to data type FLOAT and
REM assign to the variable FPar_1.
FPar_1 = Cast_LongToFloat(Par_1)

EndIf

Sending a float value see example at Transmit.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 95

CAN interface
Set_CAN_BaudrateADwin

Set_CAN_
Baudrate

Set_CAN_Baudrate sets the Baud rate of the specified CAN controller.

Syntax
#Include ADWGCAN.Inc

ret_val = Set_CAN_Baudrate(can_no, rate)

Parameters

Notes
The available baud rates (bus frequencies) are given in the table
"Baudrates for the CAN bus" (Annex, page A-8). Please use the table’s
notation exactly, i.e. non-integer baud rates with 4 decimal places; val-
ues with different notation will be rejected as not allowed.

Set_CAN_Baudrate executes the following actions:
• Checks if the transferred Baud rate is allowed. If not then set the

return value to 1 and stop processing.
• Set the registers of the CAN controller for the Baud rate.
• Set sampling mode to 0: One sample per bit.
• Select the settings in such a way that the sample point is always

between 60% and 72% of the total bit length.
• Set the jump width for synchroniziation to 1.

In special cases it may be of interest to set a baud rate in a different way
than the instruction works. The hardware manual gives an explanation
how to do this.
The instruction should be called in the program sections LowInit: or
Init:, after the instruction Init_CAN, because otherwise the set Baud
rate will be overwritten by the default setting (1MBit/s).

See also
Get_CAN_Reg, Init_CAN, Set_CAN_Reg

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc

Init:
Init_CAN(1) 'Initialize CAN controller 1
Par_1 = Set_CAN_Baudrate(1,125000)'Set the Baud rate to 125

kBit/s

can_no Number (1, 2) of CAN interface. LONG

rate Baud rate in bits/second. FLOAT

ret_val 0: Baud rate is set.
1: Baud rate invalid.

LONG

CAN interface
Set_CAN_Reg ADwin

96 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Set_CAN_Reg Set_CAN_Reg writes a value into a specified register of one of the CAN con-
trollers.

Syntax
#Include ADWGCAN.Inc

Set_CAN_Reg(can_no, regno, value)

Parameters

Notes

The register list of the CAN controller can be found in the Intel®
AN82527 datasheet.

See also
Get_CAN_Reg, Init_CAN, Set_CAN_Baudrate

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc

Init:
Init_CAN(1) 'Initialization of CAN

controller 1
Set_CAN_Reg(1,0,1) 'Set control register to the

value 1

can_no Number (1, 2) of CAN interface. LONG

regno Register number in the CAN controller (0…255). LONG

value Value (8 bits), which is written into the register. LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 97

CAN interface
TransmitADwin

TransmitTransmit sends the message in CAN_Msg via the specified message object
of a CAN controller.

Syntax
#Include ADWGCAN.Inc

Transmit(can_no, msg_no)

Parameters

Notes
To send a message you have to follow the correct order:

• Enable the message object with En_Transmit for sending (only
once).

• Enter the message into the array CAN_Msg: Data bytes and number
of data bytes.

• Send the message with Transmit.

CAN interface will send the message as soon as the message object
has received access rights to the CAN bus.

See also
CAN_Msg, En_Transmit, Init_CAN, Set_CAN_Baudrate

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc
REM Sends a 32 bit FLOAT value (here: Pi) as sequence of
REM 4 bytes in a message object
#Define pi 3.14159265
Dim i As Long

Init:
Init_CAN(2) 'Initialize CAN-Controller 2

REM Initialize message object 6 of controller 2
REM for sending of CAN messages with the identifier 40
En_Transmit(2, 6,40,0)

REM Create bit pattern of Pi with data type Long
Par_1 = Cast_FloatToLong(pi)

REM divide bit pattern (32 Bit) into 4 bytes
CAN_Msg[4] = Par_1 And 0FFh 'assign LSB
For i = 1 To 3
CAN_Msg[4-i] = Shift_Right(Par_1,8*i) And 0FFh

Next i
CAN_Msg[9] = 4 'message length in bytes

Event:
Transmit(2,6) 'Sends the message object 6

Receiving of a float value see example at Read_Msg.

can_no Number (1, 2) of CAN interface. LONG

msg_no Number (1…14) of message object. LONG

RSxxx interface ADwin

98 ADwin-Gold USB / ENET, manual version 4.3, January 2012

12.5 RSxxx interface
This section describes the following instructions:

– Check_Shift_Reg (page 99)

– Get_RS (page 100)

– Read_FIFO (page 101)

– RS485_Send (page 102)

– RS_Init (page 103)

– RS_Reset (page 105)

– Set_RS (page 106)

– Write_FIFO (page 107)

ADwin-Gold USB / ENET, manual version 4.3, January 2012 99

RSxxx interface
Check_Shift_RegADwin

Check_Shift_RegCHECK_SHIFT_REG returns, if all data has been sent, which was written into
the send-FIFO of the RSxxx interface.

Syntax
#Include ADWGCAN.Inc

ret_val = Check_Shift_Reg(interface)

Parameters

Notes
With return value 0 both the send FIFO and the output shift register are
empty. With the return value 1 there is at least one bit to be sent.

We recommend to use this instruction only after you have more experi-
ence about how the controller operates (data-sheet of the manufacturer
Texas Instruments). For more common applications more comfortable
instructions are availabe in the include file.

See also
Get_RS, RS_Init, RS_Reset, Write_FIFO

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc

Event:
Rem …
Rem Check if RSxxx interface 1 still has data to send
Par_1 = Check_Shift_Reg(1)
Rem …

interface Number (1, 2) of RSxxx interface that is to be
read.

LONG

ret_val Sending status:
0: Data has been sent (= no more data in the

send-FIFO).
1: Not yet all data sent (= the send-FIFO still con-

tains data).

LONG

RSxxx interface
Get_RS ADwin

100 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Get_RS GET_RS reads out a specified controller register.

Syntax
#Include ADWGCAN.Inc

ret_val = Get_RS(reg_addr)

Parameters

Notes
We recommend to use this instruction only after you have more experi-
ence about how the controller operates (data-sheet of the manufacturer:
TL16C754 from Texas Instruments). For more common applications
more comfortable instructions are availabe in the include file.

See also
Check_Shift_Reg, RS_Init, RS_Reset, Set_RS

Valid for
Gold-CAN

Example
- / -

reg_addr Address of the controller register to read. LONG

ret_val Contents of the controller register. LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 101

RSxxx interface
Read_FIFOADwin

Read_FIFOREAD_FIFO reads a value from the input FIFO of a specified RSxxx interface.

Syntax
#Include ADWGCAN.Inc

ret_val = Read_FIFO(interface)

Parameters

Notes
- / -

See also
RS_Init, RS_Reset, RS485_Send, Write_FIFO

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc

Init:
RS_Reset()
Rem Initialize RSxxx interface 1: 9600 Baud, without parity,
Rem 8 data bits, 1 stop bit and hardware handshake.
RS_Init(1,9600,0,8,0,1)

Event:
Rem Get a value from the FIFO. If the FIFO is empty, -1 is

returned.
Par_1 = Read_FIFO(1)

interface number (1, 2) of the RSxxx interface that is to be
read out.

LONG

ret_val Contents of the input FIFO:
-1: FIFO is empty.
≥0:Transferred value.

LONG

RSxxx interface
RS485_Send ADwin

102 ADwin-Gold USB / ENET, manual version 4.3, January 2012

RS485_Send RS485_Send determines the transfer direction for a specified RSxxx interface.

Syntax
#Include ADWGCAN.Inc

RS485_Send(interface,dir)

Parameters

Notes
Setting the transfer direction means:

• Receiver: The RSxxx interface can only read data, even if data are
in the output FIFO of the controller for this RSxxx interface.

• Sender: The RSxxx interface transfers data to the bus which are read
by other devices.

• Sender/receiver: The RSxxx interface can transfer data to the bus
and back at the same time. Thus, the sent data can be checked.

See also
Check_Shift_Reg, Get_RS, RS_Init, RS_Reset, Set_RS

Valid for
Gold-CAN

Example
- / -

interface RSxxx interface to be set (1, 2). LONG

dir Tranfer direction of the RSxxx interface:
0: Set RSxxx interface to receive.
1: Set RSxxx interface to send.
2: Set RSxxx interface to send and to receive its

sent data.
3: Mute RSxxx interface, i.e. the interface works

as receiver but doesn’t put data into the input
FIFO.

LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 103

RSxxx interface
RS_InitADwin

RS_InitRS_INIT initializes one RSxxx interface.
The following parameters are set:

• Transfer rate in Baud
• Use of test bits
• Data length
• Amount of stop bits
• Transfer protocol (handshake)

Syntax
#Include ADWGCAN.Inc

RS_Init(interface,baud,parity,bits,stop,handshake)

Parameters

Notes
RS_Init is necessary before working first with the selected RSxxx in-
terface, in order to set the interface parameters. They must be identical
to the remote station, in order to verify a correct transfer.

The initialization is necessary after you have executed a hardware reset
with the instruction RS_Reset.

If transfer protocol RS485 is set, the transfer direction must be set, too
(with RS485_Send).

You find a list of standard baud rates on page 37 (fig. 25).

See also
Check_Shift_Reg, Get_RS, RS485_Send, RS_Reset, Set_RS

Valid for
Gold-CAN

interface Number of RSxxx interface (1, 2), which is to be
initialized.

LONG

baud Transfer rate in Baud:
RS232: 35 … 115,200
RS485: 35 … 2,304,000

LONG

parity Use of test bits:
0: without parity bit.
1: even parity.
2: odd parity.

LONG

bits Amount of data bits (5, 6, 7 or 8). LONG

stop Amount of stop bits.
0: 1 stop bit.
1: 1½ stop bits at 5 data bits;

2 stop bits at 6, 7 or 8 data bits.

LONG

handshake Transfer protocol:
0: RS232, No handshake.
1: RS232, Hardware handshake (RTS/CTS).
2: RS232, Software handshake (Xon/Xoff).
3: RS485 (default).

LONG

RSxxx interface
RS_Init ADwin

104 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Example
#Include ADWGCAN.Inc

Init:
RS_Reset() 'Reset RSxxx controller
RS_Init(1,9600,0,8,0,1) 'Initialization of RSxxx

interface 1
'with 9600 Baud, without parity,
'8 data bits, 1 stop bit and
'hardware handshake.

ADwin-Gold USB / ENET, manual version 4.3, January 2012 105

RSxxx interface
RS_ResetADwin

RS_ResetRS_RESET executes a hardware reset and deletes the settings for all RSxxx
interfaces.

Syntax
#Include ADWGCAN.Inc

RS_Reset()

Parameters
- / -

Notes
RS_Reset sends a reset impulse to the input of the controller
TL16C754. In the data-sheet of the controller 16C754 from Texas Instru-
ments it is described, to which values the registers have been set after
the hardware reset.

After a hardware reset an initialization with RS_Init must follow, in or-
der to initialize the controller and to set the interface parameters.

See also
Check_Shift_Reg, Get_RS, RS_Init, Set_RS

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc

Init:
RS_Reset() 'Reset RSxxx controller
RS_Init(1,9600,0,8,0,1) 'Initialization of RSxxx

interface 1
'with 9600 Baud, without parity,
'8 data bits, 1 stop bit and
'hardware handshake.

RSxxx interface
Set_RS ADwin

106 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Set_RS SET_RS writes a value into a specified register of the controller.

Syntax
#Include ADWGCAN.Inc

Set_RS(reg_addr,value)

Parameters

Notes
We recommend to use this instruction only after you have more experi-
ence about how the controller operates (data-sheet of the manufacturer:
TL16C754 from Texas Instruments). For more common applications
more comfortable instructions are availabe in the include file.

See also
Get_RS, RS_Init, RS_Reset

Valid for
Gold-CAN

Example
- / -

reg_addr Number of the register, into which data are written. LONG

value Value to be written into the register. LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 107

RSxxx interface
Write_FIFOADwin

Write_FIFOWRITE_FIFO writes a value into the send-FIFO of a specified RSxxx interface.

Syntax
#Include ADWGCAN.Inc

ret_val = Write_FIFO(interface,value)

Parameters

Notes
The instruction checks first if there is at least one free memory cell in the
send-FIFO. If so, the transferred value is written into the FIFO (return
value 0); otherwise a 1 is returned, indicating that the FIFO is full and
writing is not possible.

See also
Check_Shift_Reg, Read_FIFO, RS_Init, RS_Reset, RS485_Send

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc
Dim val As Long

Init:
RS_Reset()
RS_Init(1,9600,0,8,0,1) 'Initialization of RSxxx

interface 1
'with 9600 Baud, no parity,
'8 data bits, 1 stop bit and
'hardware handshake.

Event:
Par_1 = Write_FIFO(1,val) 'If the FIFO is not full, [val]

'is written into the FIFO.
Otherwise

'a 1 in Par_1 indicates that
writing

'into the FIFO ist not possible
'(FIFO full).

interface RSxxx interface number (1, 2) to whose send-
FIFO data are transferred.

LONG

value Value to be written into the send-FIFO. LONG

ret_val Status message:
0: Data are transferred successfully.
1: Data were not transferred, send-FIFO is full.

LONG

SSI interface ADwin

108 ADwin-Gold USB / ENET, manual version 4.3, January 2012

12.6 SSI interface
This section describes the following instructions:

– SSI_Mode (page 109)

– SSI_Read (page 110)

– SSI_Set_Bits (page 111)

– SSI_Set_Clock (page 112)

– SSI_Start (page 113)

– SSI_Status (page 114)

ADwin-Gold USB / ENET, manual version 4.3, January 2012 109

SSI interface
SSI_ModeADwin

SSI_ModeSSI_MODE sets the modes of all SSI decoders, either "single shot" (read out
once) or "continuous" (read out continuously).

Syntax
#Include ADWGCNT.Inc

SSI_Mode(pattern)

Parameters

Notes
If you select "continuous" mode, reading the encoder is started imme-
diately. SSI_Start is not necessary then.

Using the "continuous" mode, some encoder types occasionally return
the wrong counter value 0 (zero) instead of the corrct counter value. This
error does not occur with the "single shot" mode.

See also
SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Start, SSI_Status

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc
Rem Decoder 1 runs 1.0 MHz, Decoder 2 runs 0.4 MHz
Init:
SSI_Set_Clock(1,10) 'clock rate for decoder 1
SSI_Set_Clock(2,25) 'clock rate for decoder 2
SSI_Mode(11b) 'Set continuous-mode for

'encoders 1+2
SSI_Set_Bits(1,10) '10 encoder bits for encoder 1
SSI_Set_Bits(2,25) '25 encoder bits for encoder 2

Event:
Par_1 = SSI_Read(1) 'Read out position value

'(encoder 1)
Par_2 = SSI_Read(2) 'Read out position value

'(encoder 2)

pattern Operation mode of the SSI decoders, indicated as
bit pattern. A bit is assigned to each of the decod-
ers (see table).
Bit = 0: "Single shot" mode, the encoder is read

out once.
Bit = 1: "Continuous" mode, the encoder is read

out continuously.

LONG

Bit no. 31:2 3 2 1 0
SSI decoder – 4 3 2 1

SSI interface
SSI_Read ADwin

110 ADwin-Gold USB / ENET, manual version 4.3, January 2012

SSI_Read SSI_READ returns the last saved counter value of a specified SSI counter.

Syntax
#Include ADWGCNT.Inc

ret_val = SSI_Read(dcdr_no)

Parameters

Notes
An encoder value is saved when the bits indicated by SSI_Set_Bits
are read.

See also
SSI_Mode, SSI_Set_Bits, SSI_Set_Clock, SSI_Start, SSI_Status

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc
Rem Decoder runs 200 kHz
Dim m, n, y As Long

Init:
SSI_Set_Clock(1,50) 'clock rate for decoder 1
SSI_Mode(1) 'Set continuous-mode (encoder 1)
SSI_Set_Bits(1,23) '23 encoder bits for encoder 1

Event:
Par_1 = SSI_Read(1) 'Read out position value

'(encoder 1)

REM Change value from Gray-code into a binary value:
m = 0 'delete value of the last

'conversion
y = 0 ' -"-
For n = 1 To 32 'Check all 32 possible bits
m = (Shift_Right(Par_1,(32 - n)) And 1) XOr m
y = (Shift_Left(m,(32 - n))) Or y

Next n
Par_9 = y 'The result of the Gray/binary

'conversion in Par_9

dcdr_no Number (1…4) of the SSI decoder whose counter
value is to be read.

LONG

ret_val Last counter value of the SSI counter (= absolute
value position of the encoder).

LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 111

SSI interface
SSI_Set_BitsADwin

SSI_Set_BitsSSI_SET_BITS sets for an SSI counter the amount of bits which generate a
complete encoder value.
The number of bits should be equal to the resolution of the encoder.

Syntax
#Include ADWGCNT.Inc

SSI_Set_Bits(dcdr_no,bit_count)

Parameters

Notes
The resolution (amount of bits) of the SSI encoder should be similar to
the amount of bits which are transferred.

See also
SSI_Mode, SSI_Read, SSI_Set_Clock, SSI_Start, SSI_Status

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc
Rem Decoder 1 runs 1.0 MHz, Decoder 2 runs 0.4 MHz
Init:
SSI_Set_Clock(1,50) 'clock rate for decoder 1
SSI_Set_Clock(2,50) 'clock rate for decoder 2
SSI_Mode(11b) 'Set continuous-mode (encoders

'1+2)
SSI_Set_Bits(1,10) '10 encoder bits for encoder 1
SSI_Set_Bits(2,25) '25 encoder bits for encoder 2

Event:
Par_1 = SSI_Read(1) 'Read out position value

'(encoder 1)
Par_2 = SSI_Read(2) 'Read out position value

'(encoder 2)

dcdr_no Number (1…4) of the SSI decoder whose resolu-
tion is to be set.

LONG

bit_count Amount of bits (1…32) of the bits which are to be
read for the encoder (corresponds to the encoder
resolution).

LONG

SSI interface
SSI_Set_Clock ADwin

112 ADwin-Gold USB / ENET, manual version 4.3, January 2012

SSI_Set_Clock SSI_SET_CLOCK sets the clock rate (approx. 40kHz to 1MHz) , with which the
encoder is clocked.

Syntax
#Include ADWGCNT.Inc

SSI_Set_Clock(dcdr_no,prescale)

Parameters

Notes
Scale factors < 10 are automatically corrected to the value 10; from val-
ues > 255 only the least significant 8 bits are used as scale factor.

The possible clock frequency depends on the length of the cable, cable
type, and the send and receive components of the encoder or decoder.
Basically the following rule applies: The higher the clock frequency the
shorter the cable length.

See also
SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Start, SSI_Status

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc
Rem Decoder 1 runs 1.0 MHz, Decoder 2 runs 0.4 MHz
Init:
SSI_Set_Clock(1,10) 'clock rate for decoder 1
SSI_Set_Clock(2,20) 'clock rate for decoder 2
SSI_Mode(11b) 'Set continuous-mode for encoder

'1+2
SSI_Set_Bits(1,10) '10 encoder bits for encoder 1
SSI_Set_Bits(2,25) '25 encoder bits for encoder 2

Event:
Par_1 = SSI_Read(1) 'Read out position value

'(encoder 1)
Par_2 = SSI_Read(2) 'Read out position value

'(encoder 2)

dcdr_no Number (1…4) of the SSI decoder whose clock
rate is to be set.

LONG

prescale Scale factor (10…255) for setting the clock rate
according to the equation:
Clock rate = 10MHz / prescale.

LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 113

SSI interface
SSI_StartADwin

SSI_StartSSI_START starts the reading of one or both SSI encoders (only in mode "sin-
gle shot").

Syntax
#Include ADWGCNT.Inc

SSI_Start(pattern)

Parameters

Notes
In continuous mode SSI_Start has no function, because the encoder
values are nevertheless read out continuously.

An encoder value will be saved only when the amount of bits is read
which is set by SSI_Set_Bits.
A complete encoder value is always transferred, even if the operation
mode is changing meanwhile.

See also
SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Status

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc
Rem Both decoders run 40 kHz
Init:
SSI_Set_Clock(1,250) 'clock rate for decoder 1
SSI_Set_Clock(2,250) 'clock rate for decoder 2
SSI_Mode(0) 'Set single shot-mode (all

'counters)
SSI_Set_Bits(1,23) '23 encoder bits for encoder 1
SSI_Set_Bits(2,23) '23 encoder bits for encoder 2

Event:
SSI_Start(11b) 'Read position value of encoders

'1 & 2
Do 'for encoder 1:
Until (SSI_Status(1) = 0) 'If position value is read

'completely …
Par_1 = SSI_Read(1) 'read out and display position

'value
Do 'For encoder 2:
Until (SSI_Status(2) = 0) 'If position value is read

'completely …
Par_1 = SSI_Read(2) 'read out and display position

'value

pattern Bit pattern for selecting the SSI decoders which
are to be started:
Bit = 0: No function.
Bit = 1: Start reading of the SSI decoder.

LONG

Bit no. 31:2 3 2 1 0
SSI decoder – 4 3 2 1

SSI interface
SSI_Status ADwin

114 ADwin-Gold USB / ENET, manual version 4.3, January 2012

SSI_Status SSI_Status returns the current read-status on the speicified module for a
specified decoder.

Syntax
#Include ADWGCNT.Inc

ret_val = SSI_Status(dcdr_no)

Parameters

Notes
Use the status query only in the SSI mode "single shot". In the mode
"continuous" querying the status is not useful.

See also
SSI_Mode, SSI_Read, SSI_Set_Bits, SSI_Set_Clock, SSI_Start

Valid for
Gold-CAN

Example
#Include ADWGCAN.Inc
Rem Both decoders run 40 kHz
Init:
SSI_Set_Clock(1,250) 'clock rate for decoder 1
SSI_Set_Clock(2,250) 'clock rate for decoder 2
SSI_Mode(0) 'Set single shot-mode (all

'counters)
SSI_Set_Bits(1,23) '23 encoder bits for encoder 1
SSI_Set_Bits(2,23) '23 encoder bits for encoder 2

Event:
SSI_Start(11b) 'Read position value of encoders

'1 & 2
Do 'For encoder 1:
Until (SSI_Status(1) = 0) 'If position value is read

'completely …
Par_1 = SSI_Read(1) 'Read out and display position

'value
Do 'For encoder 2:
Until (SSI_Status(2) = 0) 'If position value is read

'completely …
Par_1 = SSI_Read(2) 'Read out and display position

'value

dcdr_no Number (1…4) of the SSI decoder whose status is
to be queried.

LONG

ret_val Read-status of the decoder:
0: Decoder is ready, that is a complete value was

has been read.
1: Decoder is reading an encoder value.

LONG

ADwin-Gold USB / ENET, manual version 4.3, January 2012 A-1

Annex
Technical DataADwin

Annex
A.1 Technical Data
All technical data refer to a powered-up ADwin-Gold system.

General Data/Limit Values
Symbol Conditions min. typ. max. Unit

Supply Voltage/Supply Current

Voltage Ub 10 12 35 V

Idle current,
USB Interface

Iidle, USB

Ub=10V 1.1

A

Ub=12Va

a. applies to Gold-CO1, too

0.9

Ub=35V 0.3

Ub=12V; Gold-DA 1.4

Power-up current,
USB Interface

Ipower-on, USB
Ub=12Va 1.7

Ub=12V; Gold-DA 2.9

Idle current,
Ethernet Interface

Iidle, USB

Ub=10V 1.3

A

Ub=12Va 1.1

Ub=35V 0.4

Ub=12V; Gold-DA 1.5

Power-up current,
Ethernet Interface

Ipower-on, Enet
Ub=12Va 2.1

Ub=12V; Gold-DA 3.1

Valid operation ranges

Temperature Tchassis +5 +60 °C

Relative humidity Frel no condensation 0 80 %

Storage
Temperature T -20 +70 °C
Connectors
DSUB connectors Metric ISO threads; UNC threads available as ordering option
Dimensions

Width × height × depth
(height incl. connectors) W × H × D

Gold-USB, Gold-ENET 214 × 75 × 109

mmwith CAN Add-On Height: +20

with clipsb Height: +7; depth: +26

Net weight

Weight mNet

Gold-USB, Gold-ENET 1320

gwith CAN Add-On 1760

Clipsb

b. Accessories for DIN rail mounting: Gold-Mount

32

Annex
Technical Data ADwin

A-2 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Digital Inputs/Outputs
Parameters Symbol Conditions min. typ. max. Unit
I/O-lines

Number
DIO00:DIO31 32 (programmable in groups of 8 as inputs or outputs)

EVENT ext. trigger input (positive TTL logic)
Inputs

Max. input voltage VCC = 5V -0.5 +5.5

VLogic
input voltage

VIH (High) VCC = 5V 2.4

VIL (Low) VCC = 5V 0.8

Logic input current II VCC = 5V ±0.01 ±2 µA

Outputs

Logic
output voltage

VOH (High) IOH= -6mA 3.84 4.3
V

VOL (Low) IOL= +6mA 0.17 0.33

Logic output current

IO per DIO line ±35

mA
ITOTAL

all DIGIN or. all
DIGOUT

via VCC / GND
±70

EVENT Input

Edge recognition, pos. VT+ (Low) VCC = 5V 1.65 1.9 2.15

VSwitching hysteresis VT+ - VT- 0.4 0.9

Input current
IIH VI = 2.7V 20

µA
IIL VI = 0.4V -50

Analog Inputs/Outputs
Parameters Symbol Conditions min. typ. max. Unit
Inputs
Number 2 × 8 via multiplexer, differential

Input resistance Ri 323.4 330 336.6 kΩ

Overvoltage Uin max. ON & OFF ±35 V

Multiplexer
settling time

tMUX
1 LSB 14-bit 2.5 µs
1 LSB 16-bit 6.5 µs

ADC 14-bit

Conversion time tconv 0.5 µs

Measurement range Uin

Fv=1 -10 +9.999695

V

Fv=2 -5 +4.999847

Fv=4 -2.5 +2.499924

Fv=8 -1.25 +1.249962

Diff. common mode volt-
age. ±2.5

Integral non-linearity INL ±1 ±3
LSB

Differential non-linearity DNL ±0.25 ±0.5

ADwin-Gold USB / ENET, manual version 4.3, January 2012 A-3

Annex
Technical DataADwin

Offset
Drift ±2 ppm/K
Error adjustable

Gain
Drift ±5 ppm/K
Error adjustable

ADC 16-bit

Conversion time tconv 5 µs

Measurement range Uin

Fv=1 -10 +9.999695

V

Fv=2 -5 +4.999847

Fv=4 -2.5 +2.499924

Fv=8 -1.25 +1.249962

Diff. common mode voltage ±2.5
Integral non-linearity INL ±1 ±3

LSB
Differential non-linearity DNL ±0.25 ±0.5

Offset
Drift ±2 ppm/K
Error Adjustable

Gain
Drift ±5 ppm/K
Error Adjustable

Outputs: DAC 16-bit
Number 2 (with DA add-on: 8)

Output voltage Uout -10 +9.999695 V

Settling time tsettle
2V jump 3

µs
FSRa (20V) 10

Permissible current ±25 mA
Integral non-linearity INL ±2

LSB
Differential non-linearity DNL ±1

Offset
Drift ±1 ppm/K
Error Adjustable

Gain
Drift ±3 ppm/K
Error Adjustable

a. Full Scale Range

Processor
Parameters Symbol Conditions min. typ. max. Unit
Type ADSP21062 (SHARC™)
Manufacturer Analog Devices

Clock frequency fCLK 40 MHz

Register width 32 Bit

Internal memory SRAM
for programs 128 256 a

a. combined memory expansion G-MEM-64

kByte
for data 128 256 a

External memory SDRAM 16 64 a MByte

Analog Inputs/Outputs
Parameters Symbol Conditions min. typ. max. Unit

Annex
Technical Data ADwin

A-4 ADwin-Gold USB / ENET, manual version 4.3, January 2012

CO1 Add-On
Parameters Symbol Conditions min. typ. max. Unit
Counter
Number 4 counters (CNTR1 … CNTR4)

Inputs For each counter 3 differential inputs (A/CLK, B/DIR, CLR/LATCH); counter inputs
programmable in pairs for differential or TTL mode (single-ended)

Counter resolution 32 Bit

Count frequency fCLK
Input CLK 20

MHz
Input A/B 5

Latch width LATCH 32 Bit
Reference quartz oscillator

Reference frequency fref 20
MHz

Prescaler by 4 fref / 4 5

Accuracy and Drift 100 ppm
Counter inputs differentiala

a. see also data sheet MAX3098 from MAXIM

Differential input thresh-
old voltage

VTH
-10V ≤ VCM ≤

13.2V
-200 +200 mV

Input hysteresis ΔVTH
-10V ≤ VCM ≤

13.2V
40 mV

Range of common mode
voltage

VCM -10 +13.2 V

Differential slew rate 0.33 V/µs
Permissible differential
input voltage for each input ±3.9 V

Counter inputs single endedb (with Schmitt trigger)

b. see also data sheet 74LS19 from Texas Instruments

Edge recognition, pos. VT+ (Low)

VCC = 5V

1.65 1.9 2.15

VEdge recognition, neg. VT- (Low) 0.75 1.0 1.25

Switching hysteresis VT+ - VT- 0.4 0.9

Input current
IH VI = 2.7V 20

µA
IL VI = 0.4V -50

ADwin-Gold USB / ENET, manual version 4.3, January 2012 A-5

Annex
Hardware Addresses - General OverviewADwin

A.2 Hardware Addresses - General Overview

Hardware addresses for ADCs

Hardware addresses for DACs

Address
[HEX] Function

Bit
Commentary

31:16 15:10 9 8 7 6 5 4 3 2 1 0

20400000

Set MUX 1: channels 1, 3, 5, …, 15 - - - - - - - - - n n n ""nnn"" binary = 0...7 decimal,
 selected ch. = nnn +

Set MUX 2: channels 2, 4, 6, …, 16 - - - - - - n n n - - - ""nnn"" binary = 0...7 decimal,
 selected ch. = 2(nnn + 1

Gain PGA 1 - - - - g g - - - - - - ""gg"" binary = 0...3 decimal,
 selected gain = 2ggGain PGA 2 - - g g - - - - - - - -

20400010

Start conversion: ADC 1 (16-bit) - - - - - - - - - 1 - s
s = 0 : start conversion
s = 1 : no effect

Start conversion: ADC 2 (16-bit) - - - - - - - - - 1 s -
Start conversion: ADC 1 (14-bit) - - - - - - - - s 1 - -
Start conversion: ADC 2 (14-bit) - - - - - - - s - 1 - -

20400020

EOC status: ADC 1 (16-bit) - - - - - - - - - - - e
e = 0 : end of conversion
e = 1 : conversion is running

EOC status: ADC 2 (16-bit) - - - - - - - - - - e -
EOC status: ADC 1 (14-bit) - - - - - - - - e - - -
EOC status: ADC 2 (14-bit) - - - - - - - e - - - -

20400030 Read out register: ADC 1 (16-bit) - x x x x x x x x x x x

x : result of conversion

20400040 Read out register: ADC 2 (16-bit) - x x x x x x x x x x x
20400130 Read out register: ADC 1 (14-bit) - x x x x x x x x x 0 0
20400140 Read out register: ADC 2 (14-bit) - x x x x x x x x x 0 0

20400100 Read out register and start conversion:
ADC 1 (16-bit) - x x x x x x x x x x x

20400110 Read out register and start conversion:
ADC 2 (16-bit) - x x x x x x x x x x x

20400120 Read out register and start conversion:
ADC 1 (14-bit) - x x x x x x x x x x x

204001D0 Read out register and start conversion:
ADC 2 (14-bit) - x x x x x x x x x x x

Address
[HEX] Function

Bit
Commentary

31:16 15:10 9 8 7 6 5 4 3 2 1 0

20400010 Start conversion: All DACs synchronously - - - - - - - 1 1 s 1 1 s = 0 : start conversion
s = 1 : no effect

20400050 Write only to the register: DAC 1 - x x x x x x x x x x x

x : digital value to be converted

20400060 Write only to the register: DAC 2 - x x x x x x x x x x x
20400070 Write only to the register: DAC 3 (Gold-DA) - x x x x x x x x x x x
20400080 Write only to the register: DAC 4 (Gold-DA) - x x x x x x x x x x x
20400090 Write only to the register: DAC 5 (Gold-DA) - x x x x x x x x x x x
204000A0 Write only to the register: DAC 6 (Gold-DA) - x x x x x x x x x x x
20400190 Write only to the register: DAC 7 (Gold-DA) - x x x x x x x x x x x
204001A0 Write only to the register: DAC 8 (Gold-DA) - x x x x x x x x x x x

20400200 Write to the register and start conversion
immediately: DAC 1 - x x x x x x x x x x x

x : digital value to be converted

20400210 Write to the register and start conversion
immediately: DAC 2 - x x x x x x x x x x x

20400220 Write to the register and start conversion
immediately: DAC 3 (Gold-DA) - x x x x x x x x x x x

20400230 Write to the register and start conversion
immediately: DAC 4 (Gold-DA) - x x x x x x x x x x x

20400240 Write to the register and start conversion
immediately: DAC 5 (Gold-DA) - x x x x x x x x x x x

20400250 Write to the register and start conversion
immediately: DAC 6 (Gold-DA) - x x x x x x x x x x x

20400260 Write to the register and start conversion
immediately: DAC 7 (Gold-DA) - x x x x x x x x x x x

20400270 Write to the register and start conversion
immediately: DAC 8 (Gold-DA) - x x x x x x x x x x x

Annex
Hardware Addresses - General Overview ADwin

A-6 ADwin-Gold USB / ENET, manual version 4.3, January 2012

Hardware addresses for digital inputs / outputs

Hardware addresses for CO1 counter add-on

Address
[HEX] Function

Bit
Commentary

31:16 15:10 9 8 7 6 5 4 3 2 1 0
204000B0 Input registers DIO15:00 - x x x x x x x x x x x

x : digital value read in
204001B0 Input registers DIO31:16 - x x x x x x x x x x x
204001C0 Output registers DIO15:00 - x x x x x x x x x x x

x : digital value to be output
204000C0 Output registers DIO31:16 - x x x x x x x x x x x

Address
[HEX] Function

Bit
Commentary

31:04 3 2 1 0
20400204 Read out Latch A: Counter 1 x x x x x

x : Contents of the latch

20400208 Read out Latch B: Counter 1 x x x x x
20400214 Read out Latch A: Counter 2 x x x x x
20400218 Read out Latch B: Counter 2 x x x x x
20400224 Read out Latch A: Counter 3 x x x x x
20400238 Read out Latch B: Counter 3 x x x x x
20400234 Read out Latch A: Counter 4 x x x x x
20400238 Read out Latch B: Counter 4 x x x x x

20400300 Enable counter - x x x x x = 0 : Disable counter
x = 1 : Enable counter

20400304 Set counter inputs to TTL or differential
mode (in pairs only) - - - y x

x: counter inputs 1+2
y: counter inputs 3+4
x,y = 0: TTL (single-ended)
x,y = 1: differential

20400310 Clear counter - x x x x x = 0 : No influence
x = 1 : Clear counter

20400320 Latch counter - x x x x x = 0 : No influence
x = 1 : Latch counter

20400330 Input: CLR or LATCH - x x x x x = 0 : CLR input
x = 1 : LATCH input

20400340 Impulse/event counter or
impulse/pause duration measurement - x x x x x = 0 : External clock input

x = 1 : Int. ref. clock(20/5MHz)

20400350 4 edge evaluation/CLK+DIR
or 20/5MHz reference clock - x x x x

CNT_MODE = 0:
x = 0 : 4-Fl.; x = 1 : CLK+DIR
CNT_MODE = 1:
x = 0 : 20MHz; x = 1 : 5MHz

20400370 Counter: Error registera

aYou have to reset this register manually!

several bits Error bits, see CNT_GETSTATUS

ADwin-Gold USB / ENET, manual version 4.3, January 2012 A-7

Annex
Hardware revisionsADwin

A.3 Hardware revisions
The revision of a Gold system is marked on the bottom of the casing. The differences of the revision status’ are
shown below.

A.4 RoHS Declaration of Conformity
The directive 2002/95/EG of the European Union on the restriction of the use of certain hazardous substances
in electrical und electronic equipment (RoHS directive) has become operative as from 1st July, 2006.

The following substances are involved:

– Lead (Pb)

– Cadmium (Cd)

– Hexavalent chromium (Cr VI)

– Polybrominated biphenyls (PBB)

– Polybrominated diphenyl ethers (PBDE)

– Mercury (Hg)

The product line ADwin-Gold complies with the requirements of the RoHS directive in all delivered variants
since June 2006.

Revision First
release Changes to previous revision status

A 1998 First release with link data connection.
B1 Nov. 2002 Protoype (internal use only, not delivered to customers)

B2 Apr. 2003
Data connection to PC no longer via link, but via Ethernet or USB.

All analog inputs and counter inputs are only available with differential operation
mode.

B3 Nov. 2003
Additional TTL counter inputs for single-ended operation mode (for use as alterna-
tive to counter inputs for differential operation mode).

New option Gold-D with DSUB connectors instead of BNC sockets.
B4 Dec. 2003 Several enhancements

B5 Mar. 2004
Several enhancements

Layout change of printed circuit board

B6 Aug. 2004
Enhanced Ethernet interface (ENET-2) with increased data throughput.

New option Gold-CAN with several communication interfaces.

Annex
Baudrates for the CAN bus ADwin

A-8 ADwin-Gold USB / ENET, manual version 4.3, January 2012

A.5 Baudrates for the CAN bus
ADwin-Gold-CAN provides CAN bus interfaces, version „high speed“. The following baudrates can be set:

Available Baud rates [Bit/s]
1000000.0000 888888.8889 800000.0000 727272.7273 666666.6667

615384.6154 571428.5714 533333.3333 500000.0000 470588.2353

444444.4444 421052.6316 400000.0000 380952.3810 363636.3636

347826.0870 333333.3333 320000.0000 307692.3077 296296.2963

285714.2857 266666.6667 250000.0000 242424.2424 235294.1176

222222.2222 210526.3158 205128.2051 200000.0000 190476.1905

181818.1818 177777.7778 173913.0435 166666.6667 160000.0000

156862.7451 153846.1538 148148.1481 145454.5455 142857.1429

140350.8772 133333.3333 126984.1270 125000.0000 123076.9231

121212.1212 117647.0588 115942.0290 114285.7143 111111.1111

106666.6667 105263.1579 103896.1039 102564.1026 100000.0000

98765.4321 95238.0952 94117.6471 90909.0909 88888.8889

87912.0879 86956.5217 84210.5263 83333.3333 81632.6531

80808.0808 80000.0000 78431.3725 76923.0769 76190.4762

74074.0741 72727.2727 71428.5714 70175.4386 69565.2174

68376.0684 67226.8908 66666.6667 66115.7025 64000.0000

63492.0635 62500.0000 61538.4615 60606.0606 60150.3759

59259.2593 58823.5294 57971.0145 57142.8571 55944.0559

55555.5556 54421.7687 53333.3333 52631.5789 52287.5817

51948.0519 51282.0513 50000.0000 49689.4410 49382.7160

48484.8485 47619.0476 47337.2781 47058.8235 46783.6257

45714.2857 45454.5455 44444.4444 43956.0440 43478.2609

42780.7487 42328.0423 42105.2632 41666.6667 41025.6410

40816.3265 40404.0404 40000.0000 39215.6863 38647.3430

38461.5385 38277.5120 38095.2381 37037.0370 36363.6364

36199.0950 35714.2857 35555.5556 35087.7193 34782.6087

34632.0346 34482.7586 34188.0342 33613.4454 33333.3333

33057.8512 32921.8107 32388.6640 32258.0645 32000.0000

31746.0317 31620.5534 31372.5490 31250.0000 30769.2308

30651.3410 30303.0303 30075.1880 29629.6296 29411.7647

29304.0293 29090.9091 28985.5072 28673.8351 28571.4286

28070.1754 27972.0280 27777.7778 27681.6609 27586.2069

27210.8844 27027.0270 26936.0269 26755.8528 26666.6667

26315.7895 26143.7908 25974.0260 25806.4516 25641.0256

25396.8254 25078.3699 25000.0000 24844.7205 24767.8019

24691.3580 24615.3846 24390.2439 24242.4242 24024.0240

23809.5238 23668.6391 23529.4118 23460.4106 23391.8129

23255.8140 23188.4058 22988.5057 22857.1429 22792.0228

22727.2727 22408.9636 22222.2222 22160.6648 22038.5675

21978.0220 21739.1304 21680.2168 21621.6216 21505.3763

21390.3743 21333.3333 21276.5957 21220.1592 21164.0212

21052.6316 20833.3333 20779.2208 20671.8346 20512.8205

20460.3581 20408.1633 20202.0202 20050.1253 20000.0000

19851.1166 19753.0864 19704.4335 19656.0197 19607.8431

19512.1951 19323.6715 19230.7692 19138.7560 19047.6190

18912.5296 18867.9245 18823.5294 18648.0186 18604.6512

18518.5185 18433.1797 18390.8046 18306.6362 18181.8182

ADwin-Gold USB / ENET, manual version 4.3, January 2012 A-9

Annex
Baudrates for the CAN busADwin

18140.5896 18099.5475 18018.0180 17857.1429 17777.7778

17738.3592 17582.4176 17543.8596 17429.1939 17391.3043

17316.0173 17241.3793 17204.3011 17094.0171 17021.2766

16949.1525 16913.3192 16842.1053 16806.7227 16771.4885

16666.6667 16632.0166 16563.1470 16528.9256 16460.9053

16393.4426 16326.5306 16260.1626 16227.1805 16194.3320

16161.6162 16129.0323 16000.0000 15873.0159 15810.2767

15779.0927 15686.2745 15625.0000 15594.5419 15503.8760

15473.8878 15444.0154 15384.6154 15325.6705 15238.0952

15180.2657 15151.5152 15122.8733 15094.3396 15065.9134

15037.5940 15009.3809 14842.3006 14814.8148 14705.8824

14652.0147 14571.9490 14545.4545 14519.0563 14492.7536

14414.4144 14336.9176 14311.2701 14285.7143 14260.2496

14184.3972 14109.3474 14035.0877 13986.0140 13937.2822

13913.0435 13888.8889 13840.8304 13793.1034 13722.1269

13675.2137 13605.4422 13582.3430 13559.3220 13513.5135

13468.0135 13445.3782 13377.9264 13333.3333 13289.0365

13223.1405 13157.8947 13136.2890 13114.7541 13093.2897

13071.8954 13008.1301 12987.0130 12903.2258 12882.4477

12820.5128 12800.0000 12759.1707 12718.6010 12698.4127

12578.6164 12558.8697 12539.1850 12500.0000 12422.3602

12403.1008 12383.9009 12345.6790 12326.6564 12307.6923

12288.7865 12195.1220 12158.0547 12121.2121 12066.3650

12030.0752 12012.0120 11994.0030 11922.5037 11904.7619

11851.8519 11834.3195 11764.7059 11730.2053 11695.9064

11661.8076 11627.9070 11611.0305 11594.2029 11544.0115

11494.2529 11477.7618 11428.5714 11396.0114 11379.8009

11363.6364 11347.5177 11299.4350 11220.1964 11204.4818

11188.8112 11111.1111 11080.3324 11034.4828 11019.2837

10989.0110 10943.9124 10928.9617 10884.3537 10869.5652

10840.1084 10810.8108 10796.2213 10781.6712 10752.6882

10695.1872 10666.6667 10638.2979 10610.0796 10582.0106

10540.1845 10526.3158 10457.5163 10430.2477 10416.6667

10389.6104 10335.9173 10322.5806 10296.0103 10269.5764

10256.4103 10230.1790 10204.0816 10101.0101 10088.2724

10062.8931 10025.0627 10012.5156 10000.0000 9937.8882

9925.5583 9876.5432 9852.2167 9828.0098 9803.9216

9791.9217 9768.0098 9756.0976 9696.9697 9685.2300

9661.8357 9615.3846 9603.8415 9569.3780 9523.8095

9456.2648 9433.9623 9411.7647 9400.7051 9367.6815

9356.7251 9324.0093 9302.3256 9291.5215 9259.2593

9227.2203 9216.5899 9195.4023 9153.3181 9142.8571

9090.9091 9070.2948 9049.7738 9039.5480 9009.0090

8958.5666 8928.5714 8918.6176 8888.8889 8879.0233

8869.1796 8859.3577 8771.9298 8743.1694 8714.5969

8695.6522 8658.0087 8648.6486 8620.6897 8602.1505

8592.9108 8556.1497 8547.0085 8510.6383 8483.5631

8474.5763 8465.6085 8456.6596 8421.0526 8403.3613

8385.7442 8333.3333 8281.5735 8264.4628 8255.9340

Available Baud rates [Bit/s]

Annex
Baudrates for the CAN bus ADwin

A-10 ADwin-Gold USB / ENET, manual version 4.3, January 2012

8230.4527 8205.1282 8196.7213 8163.2653 8130.0813

8113.5903 8105.3698 8097.1660 8088.9788 8080.8081

8064.5161 8000.0000 7976.0718 7944.3893 7936.5079

7905.1383 7843.1373 7812.5000 7804.8780 7797.2710

7774.5384 7751.9380 7736.9439 7729.4686 7714.5612

7692.3077 7662.8352 7655.5024 7619.0476 7590.1328

7575.7576 7561.4367 7547.1698 7532.9567 7518.7970

7469.6545 7441.8605 7421.1503 7407.4074 7400.5550

7386.8883 7352.9412 7326.0073 7285.9745 7272.7273

7259.5281 7246.3768 7187.7808 7168.4588 7142.8571

7136.4853 7130.1248 7111.1111 7098.4916 7092.1986

7054.6737 7017.5439 6993.0070 6956.5217 6944.4444

6926.4069 6902.5022 6896.5517 6861.0635 6820.1194

6808.5106 6802.7211 6791.1715 6779.6610 6734.0067

6688.9632 6683.3751 6666.6667 6611.5702 6578.9474

6568.1445 6562.7564 6557.3770 6535.9477 6530.6122

6493.5065 6456.8200 6451.6129 6441.2238 6410.2564

6400.0000 6379.5853 6349.2063 6324.1107 6289.3082

6274.5098 6269.5925 6250.0000 6245.1210 6211.1801

6172.8395 6163.3282 6153.8462 6144.3932 6102.2121

6060.6061 6046.8632 6037.7358 5997.0015 5961.2519

5952.3810 5925.9259 5895.3574 5865.1026 5847.9532

5818.1818 5797.1014 5772.0058 5747.1264 5714.2857

5702.0670 5681.8182 5649.7175 5614.0351 5610.0982

5555.5556 5521.0490 5517.2414 5464.4809 5434.7826

5423.7288 5376.3441 5333.3333 5291.0053 5245.9016

5208.3333 5161.2903 5079.3651 5000.0000

Available Baud rates [Bit/s]

ADwin-Gold USB / ENET, manual version 4.3, January 2012 A-11

Annex
Table of figuresADwin

A.6 Table of figures

Fig. 1 – Concept of the ADwin systems . 3

Fig. 2 – Block diagram of the ADwin-Gold . 4

Fig. 3 – Power supply connector (male) . 7

Fig. 4 – Schematic of ADwin-Gold (USB version). 9

Fig. 5 – Schematic of ADwin-Gold-D (ENET version). 10

Fig. 6 – Pin assignment of analog channels with Gold-D option. 11

Fig. 7 – Input circuitry of an analog input . 11

Fig. 8 – Zero offset in the standard setting of bipolar 10 Volt 12

Fig. 9 – Storage of the ADC/DAC bits in the memory 13

Fig. 10 – Pin assignment digital IOs . 14

Fig. 11 – Overview of the configuration with CONF_DIO 16

Fig. 12 – Pin assignment of the DA add-on . 21

Fig. 13 – Block diagram of the Gold-CO1 counter add-on 22

Fig. 14 – Pin assignment of the CO1 add-on . 23

Fig. 15 – Pin assignment counter voltage supply (Gold-D). 24

Fig. 16 – Instructions of the Gold-CO1 counter add-on 24

Fig. 17 – Circle for the interpretation of counter values 25

Fig. 18 – Block diagram of the CO1 add-on in the mode
"clock and direction". 26

Fig. 19 – Block diagram of the CO1 add-on in the mode
"four edge evaluation" . 27

Fig. 20 – Block diagram of the CO1 add-on in the mode
"period duration measurement" . 28

Fig. 21 – Block diagram of the CO1 add-on mode
"impulse width/pause duration" . 29

Fig. 22 – Pin assignment SSI decoder . 31

Fig. 23 – Listing: Conversion of Gray code into binary code. 32

Fig. 24 – CAN: Pin assignments . 33

Fig. 25 – RS-xxx: Baud rates . 37

Anne
x

Annex
Index ADwin

A-12 ADwin-Gold USB / ENET, manual version 4.3, January 2012

A.7 Index

A
accessories · 42
ADC instructions

ADC · 46
ADC12 · 48
ReadADC · 50
ReadADC12 · 51
Set_Mux · 52
Start_Conv · 54
Wait_EOC · 55

add-on
CAN interface · 33
Gold-Boot · 41
Gold-CAN · 30
Gold-DA · 21
RSxxx interface · 35
SSI decoder · 31

ADwin system, booting · 8
ADwin, system concept · 2
analog inputs

ADC:measure a channel
12 bit, 14 bit · 48
16 bit · 46

input circuitry · 11
overview · 10
read converted value

12 Bit, 14 Bit · 51
16 bit · 50

set multiplexer · 52
start a conversion · 54
wait for end of conversion · 55

analog outputs
DA add-on · 21
DAC: output one value · 45
overview · 11

B
baudrates for the CAN bus · 8
block diagram · 4
Boot

automatic · 41
from ADbasic · 7

bootloader · 41

C
calibration · 17
CAN

add-on with SSI, CAN, RSxxx ·
30

interface · 33
CAN bus

baudrates · 8
CAN_Msg · 84
En_Receive · 87
En_Transmit · 88
event · 35
Get_CAN_Reg · 89
global mask · 34
Read_Msg · 91
Read_Msg_Con · 93
Set_CAN_Baudrate · 95
Set_CAN_Reg · 96
Transmit · 97

CAN instructions
CAN_Msg · 84
En_CAN_Interrupt · 86
En_Receive · 87
En_Transmit · 88
Get_CAN_Reg · 89
Init_CAN · 90
Read_Msg · 91
Read_Msg_Con · 93
Set_CAN_Baudrate · 95
Set_CAN_Reg · 96
Transmit · 97

chassis temperature · 6
Cnt_... · 66–81
conversion, digit to voltage · 13
conversion, start of · 54
Counter

configure · 24
evaluation of contents · 25
Four edge evaluation · 26
Gold-CO1 · 22
impulse width measurement · 27
operating modes · 22

Anne
x

ADwin-Gold USB / ENET, manual version 4.3, January 2012 A-13

Annex
IndexADwin

D
DAC · 45
delivery options · 5
digital channels

clear one output · 57
configure · 58
event input · 14
overview · 13
read all inputs · 60
read one input · 59
set all outputs · 61
set one output · 63

digital channels, instructions
Clear_Digout · 57
Conf_DIO · 58
Digin · 59
Digin_Word · 60
Digout_Word · 61
Set_Digout · 63

E
earth protectiom · 6
Encoder · 26
event

CAN bus · 35
hardware addresses · 5
rising edge · 14

F
Four edge evaluation · 26

G
Gain factor kV · 13
Gold

accessories · 5, 42
Boot add-on · 41
CAN add-on · 30
DA add-on · 21
delivery options · 5
overview · 4
standard delivery · 5

H
hardware addresses · 5
hardware revisions · 7

I
impulse width measurement · 27
input circuitry · 11
inputs

analog · 10
analog, voltage range · 12
digital · 13
external event · 14
open · 9

Installation
of hardware · 7
order of · 7
start · 1

instructions
analog inputs and outputs · 44
CAN interface · 83
counter · 65
digital channels · 56
RSxxx interface · 98
SSI interface · 108

M
multiplexer

allocation · 10
set · 52

N
non-linearity · 13

O
operating environment · 6
outputs

analog · 11
analog, voltage range · 12
digital · 13

P
power supply · 7
principle scheme · 4

Annex
Index ADwin

A-14 ADwin-Gold USB / ENET, manual version 4.3, January 2012

R
resistance

internal of power supply unit · 11
revisions of hardware · 7
RSxxx

Check_Shift_Reg · 99
Get_RS · 100
Read_FIFO · 101
RS_Init · 103
RS_Reset · 105
RS485_Send · 102
Set_RS · 106
Write_FIFO · 107

RSxxx instructions
Check_Shift_Reg · 99
Get_RS · 100
Read_FIFO · 101
RS_Init · 103
RS_Reset · 105
RS485_Send · 102
Set_RS · 106
Write_FIFO · 107

RSxxx interface · 35

S
settling time, see also multiplexer

see also
shielding · 6
Software · 43
SSI decoder · 31
SSI_... · 109–114
standard delivery · 5
start of conversion · 54

T
technical data · 1
time-critical tasks · 14
trigger input · 14

V
voltage range · 12

ADwin-Gold USB / ENET, manual version 4.3, January 2012 A-15

Annex
IndexADwin

	ADwin-Gold- USB / -ENET
	Table of contents
	Typographical Conventions
	1 Information about this Manual
	2 System description
	2.1 ADwin system concept
	Communication between ADwin system and PC

	2.2 The ADwin-Gold System
	2.2.1 Options (no upgrades possible)
	2.2.2 Accessories

	3 Operating Environment
	4 Initialization of the Hardware
	5 Inputs and Outputs
	5.1 Analog Inputs and Outputs
	5.1.1 Analog Inputs
	5.1.2 Analog Outputs
	5.1.3 Calculation Basis

	5.2 Digital Inputs and Outputs
	5.3 Time-Critical Tasks
	5.3.1 Analog Inputs and Outputs
	5.3.2 Digital Inputs and Outputs

	6 Calibration
	6.1 General Information
	6.2 Calibrating

	7 DA Add-On
	8 CO1 Counter Add-On
	8.1 Hardware
	8.2 Software
	8.2.1 Evaluation of the Counter Contents

	8.3 Operating Mode Impulse/Event Counting
	8.3.1 Clock and Direction
	8.3.2 Four Edge Evaluation

	8.4 Operating Mode Impulse Width and Period Width Measurement
	8.4.1 Period Duration Measurement
	8.4.2 Impulse Width and Pause Duration Measurements
	8.4.3 Hardware addresses (CO1-add-on)

	9 CAN add-on
	9.1 SSI Decoder
	9.2 CAN Interface
	9.2.1 Hardware Description
	9.2.2 Description of the CAN interface
	Message Management
	Setting the bus frequency
	Enable Interrupt / Trigger Event
	Programming

	9.3 RSxxx Interfaces
	9.3.1 Setting the interface parameters
	9.3.2 Programming

	10 ADwin-Gold-Boot
	11 Accessories
	12 Software
	12.1 Analog Inputs and Outputs
	DAC
	ADC
	ADC12
	ReadADC
	ReadADC12
	Set_Mux
	Start_Conv
	Wait_EOC

	12.2 Digital Inputs and Outputs
	Clear_Digout
	Conf_DIO
	Digin
	Digin_Word
	Digout_Word
	Set_Digout

	12.3 Counter
	Cnt_Clear
	Cnt_Enable
	Cnt_GetStatus
	Cnt_InputMode
	Cnt_Latch
	Cnt_Mode
	Cnt_Read
	Cnt_ReadLatch
	Cnt_ReadFLatch
	Cnt_ResetStatus
	Cnt_Set
	Cnt_SE_Diff

	12.4 CAN interface
	CAN_Msg
	En_CAN_Interrupt
	En_Receive
	En_Transmit
	Get_CAN_Reg
	Init_CAN
	Read_Msg
	Read_Msg_Con
	Set_CAN_ Baudrate
	Set_CAN_Reg
	Transmit

	12.5 RSxxx interface
	Check_Shift_Reg
	Get_RS
	Read_FIFO
	RS485_Send
	RS_Init
	RS_Reset
	Set_RS
	Write_FIFO

	12.6 SSI interface
	SSI_Mode
	SSI_Read
	SSI_Set_Bits
	SSI_Set_Clock
	SSI_Start
	SSI_Status

	Annex
	A.1 Technical Data
	A.2 Hardware Addresses - General Overview
	A.3 Hardware revisions
	A.4 RoHS Declaration of Conformity
	A.5 Baudrates for the CAN bus
	A.6 Table of figures
	A.7 Index

